A fully genetically encoded protein architecture for optical control of peptide ligand concentration
被引:40
作者:
Schmidt, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
MIT, Dept Biol Engn, Media Lab, Cambridge, MA 02139 USA
MIT, McGovern Inst, Cambridge, MA 02139 USAMIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
Schmidt, Daniel
[1
,2
,3
]
Tillberg, Paul W.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USAMIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
Tillberg, Paul W.
[4
]
Chen, Fei
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
MIT, Dept Biol Engn, Media Lab, Cambridge, MA 02139 USA
MIT, McGovern Inst, Cambridge, MA 02139 USAMIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
Chen, Fei
[1
,2
,3
]
Boyden, Edward S.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
MIT, Dept Biol Engn, Media Lab, Cambridge, MA 02139 USA
MIT, McGovern Inst, Cambridge, MA 02139 USAMIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
Boyden, Edward S.
[1
,2
,3
]
机构:
[1] MIT, Dept Brain & Cognit Sci, Media Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, Media Lab, Cambridge, MA 02139 USA
[3] MIT, McGovern Inst, Cambridge, MA 02139 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
REMOTE-CONTROL;
ION CHANNELS;
GLUTAMATE-RECEPTOR;
ALPHA-DENDROTOXIN;
POTASSIUM CHANNEL;
TOXINS;
BINDING;
D O I:
10.1038/ncomms4019
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Ion channels are among the most important proteins in biology, regulating the activity of excitable cells and changing in diseases. Ideally it would be possible to actuate endogenous ion channels, in a temporally precise and reversible manner, and without requiring chemical cofactors. Here we present a modular protein architecture for fully genetically encoded, light-modulated control of ligands that modulate ion channels of a targeted cell. Our reagent, which we call a lumitoxin, combines a photoswitch and an ion channel-blocking peptide toxin. Illumination causes the photoswitch to unfold, lowering the toxin's local concentration near the cell surface, and enabling the ion channel to function. We explore lumitoxin modularity by showing operation with peptide toxins that target different voltage-dependent K+ channels. The lumitoxin architecture may represent a new kind of modular protein-engineering strategy for designing light-activated proteins, and thus may enable development of novel tools for modulating cellular physiology.