Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation

被引:504
作者
Gao, Min-Rui [1 ]
Cao, Xuan [1 ]
Gao, Qiang [1 ]
Xu, Yun-Fei [1 ]
Zheng, Ya-Rong [1 ]
Jiang, Jun [1 ]
Yu, Shu-Hong [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei Natl Lab Phys Sci Microscale,Div Nanomat &, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
nitrogen-doped graphene; composite catalysts; water oxidation; cobalt selnides; nanobelts; OXYGEN EVOLUTION; COBALT OXIDE; ELECTROCATALYSTS; NANOPARTICLES; ELECTROLYSIS; STORAGE; SURFACE; ROUTE;
D O I
10.1021/nn500880v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The slow kinetics of the oxygen evolution reaction (OER) greatly hinders the large-scale production of hydrogen fuel from water splitting. Although many OER electrocatalysts have been developed to negotiate this difficult reaction, substantial progresses in the design of cheap, robust, and efficient catalysts are still required and have been considered a huge challenge. Here, we report a composite material consisting of CoSe2 nanobelts anchored on nitrogen-doped reduced graphene oxides (denoted as NG-CoSe2) as a highly efficient OER electrocatalyst. In 0.1 M KOH, the new NG-CoSe2 catalyst afforded a current density of 10 mA cm(-2) at a small overpotential of mere 0.366 V and a small Tafel slope of similar to 40 mV/decade, comparing favorably with the state-of-the-art RuO2 catalyst. This NG-CoSe2 catalyst also presents better stability than that of RuO2 under harsh OER cycling conditions. Such good OER performance is comparable to the best literature results and the synergistic effect was found to boost the OER performance. These results raise the possibility for the development of effective and robust OER electrodes by using cheap and easily prepared NG-CoSe2 to replace the expensive commercial catalysts such as RuO2 and IrO2.
引用
收藏
页码:3970 / 3978
页数:9
相关论文
共 50 条
[1]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[2]   The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 toward Water Oxidation [J].
Barroso, Monica ;
Cowan, Alexander J. ;
Pendlebury, Stephanie R. ;
Graetzel, Michael ;
Klug, David R. ;
Durrant, James R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :14868-14871
[3]   WHITE LINES IN X-RAY ABSORPTION [J].
BROWN, M ;
PEIERLS, RE ;
STERN, EA .
PHYSICAL REVIEW B, 1977, 15 (02) :738-744
[4]   Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Li, Hui-Hui ;
Yang, Jing-Jing ;
Wang, Zheng ;
Yao, Hong-Bin ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (01) :712-719
[5]  
Cobo S, 2012, NAT MATER, V11, P802, DOI [10.1038/NMAT3385, 10.1038/nmat3385]
[6]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[7]   The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J].
Dau, Holger ;
Limberg, Christian ;
Reier, Tobias ;
Risch, Marcel ;
Roggan, Stefan ;
Strasser, Peter .
CHEMCATCHEM, 2010, 2 (07) :724-761
[8]   Size-Dependent Activity of Co3O4 Nanoparticle Anodes for Alkaline Water Electrolysis [J].
Esswein, Arthur J. ;
McMurdo, Meredith J. ;
Ross, Phillip N. ;
Bell, Alexis T. ;
Tilley, T. Don .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :15068-15072
[9]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[10]   Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices [J].
Gao, Min-Rui ;
Xu, Yun-Fei ;
Jiang, Jun ;
Yu, Shu-Hong .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2986-3017