Advances in optical imaging for pharmacological studies

被引:52
作者
Arranz, Alicia [1 ]
Ripoll, Jorge [2 ,3 ]
机构
[1] Spanish Natl Res Council, Dept Cell Biol & Immunol, Ctr Mol Biol Severo Ochoa, Madrid 28049, Spain
[2] Univ Carlos III Madrid, Dept Bioengn & Aerospace Engn, Madrid, Spain
[3] Hosp Gregorio Maranon, Inst Invest Sanitaria, Expt Med & Surg Unit, Madrid, Spain
关键词
bioluminescence; planar fluorescence imaging; fluorescence molecular tomography; optoacoustics; multispectral optoacoustic tomography; multispectral imaging; hybrid systems; data processing; FLUORESCENCE MOLECULAR TOMOGRAPHY; MULTISPECTRAL OPTOACOUSTIC TOMOGRAPHY; IN-VIVO; FIREFLY LUCIFERASE; SIGNAL NANOAMPLIFIERS; PROTEASE ACTIVITY; ANIMAL-MODELS; BIOLUMINESCENCE; TISSUE; EXPRESSION;
D O I
10.3389/fphar.2015.00189
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering.
引用
收藏
页数:7
相关论文
共 65 条
[1]  
Ale A, 2012, NAT METHODS, V9, P615, DOI [10.1038/NMETH.2014, 10.1038/nmeth.2014]
[2]   Optimisation of Bioluminescent Reporters for Use with Mycobacteria [J].
Andreu, Nuria ;
Zelmer, Andrea ;
Fletcher, Taryn ;
Elkington, Paul T. ;
Ward, Theresa H. ;
Ripoll, Jorge ;
Parish, Tanya ;
Bancroft, Gregory J. ;
Schaible, Ulrich ;
Robertson, Brian D. ;
Wiles, Siouxsie .
PLOS ONE, 2010, 5 (05)
[3]  
[Anonymous], 2011, HDB FLUORESCENCE SPE
[4]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[5]   Gold Nanoprisms as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Gastrointestinal Cancers [J].
Bao, Chenchen ;
Beziere, Nicolas ;
del Pino, Pablo ;
Pelaz, Beatriz ;
Estrada, Giovani ;
Tian, Furong ;
Ntziachristos, Vasilis ;
de la Fuente, Jesus M. ;
Cui, Daxiang .
SMALL, 2013, 9 (01) :68-74
[6]   Opto-Acoustic Imaging of Drug Discovery Biomarkers [J].
Bednar, Bohumil ;
Ntziachristos, Vasilis .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2012, 13 (11) :2117-2127
[7]  
Boas DA., 2011, HDB BIOMEDICAL OPTIC
[8]   Chemically Modified Firefly Luciferase Is an Efficient Source of Near-Infrared Light [J].
Branchini, Bruce R. ;
Ablamsky, Danielle M. ;
Rosenberg, Justin C. .
BIOCONJUGATE CHEMISTRY, 2010, 21 (11) :2023-2030
[9]   Red-emitting luciferases for bioluminescence reporter and imaging applications [J].
Branchini, Bruce R. ;
Ablamsky, Danielle M. ;
Davis, Audrey L. ;
Southworth, Tara L. ;
Butler, Braeden ;
Fan, Frank ;
Jathoul, Amit P. ;
Pule, Martin A. .
ANALYTICAL BIOCHEMISTRY, 2010, 396 (02) :290-297
[10]   A Selenium Analogue of Firefly D-Luciferin with Red-Shifted Bioluminescence Emission [J].
Conley, Nicholas R. ;
Dragulescu-Andrasi, Anca ;
Rao, Jianghong ;
Moerner, W. E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (14) :3350-3353