Quantitative analysis on distribution of microcosmic residual oil in reservoirs by frozen phase and nuclear magnetic resonance (NMR) technology

被引:19
|
作者
Xiong, Chunming [1 ]
Ding, Bin [1 ,2 ]
Geng, Xiangfei [1 ,2 ]
Guan, Baoshan [1 ,2 ]
Pan, Jingjun [3 ]
Dong, Jingfeng [3 ]
Huang, Bo [3 ]
Yan, Youguo [4 ]
机构
[1] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[2] CNPC, Key Lab Oilfield Chem, Beijing 100083, Peoples R China
[3] PetroChina, Xinjiang Oilfield Co, Karamay 834000, Peoples R China
[4] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
关键词
Microcosmic residual oil; Phase change; Frozen section; Low field NMR; Laser confocal; PORE STRUCTURE; RECOVERY; PERMEABILITY; SEM; SURFACTANT; INJECTION; MECHANISM; EXPLORATION; SATURATION; IMBIBITION;
D O I
10.1016/j.petrol.2020.107256
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Understanding and characterizing the distribution and occurrence state of microcosmic residual oil is helpful to optimize judicious strategy for enhancing oil recovery (EOR). In this paper, frozen phase technology was developed to realize accurately characterize the oil and water saturation and their occurrence state. First, the core was placed in liquid nitrogen to frozen the oil and water inside it, and the solidified oil and water guarantees no destroying of their original distribution of oil and water, and 0.05 mm slice could be obtained. Second, taking advantage of different freezing point of oil and water, the low-field NMR is employed to achieve high-resolution single oil signal under freezing point of water and both oil and water signal at room temperature, thus, the oil and water saturation could be accessed, and their distribution in different-sized pore could be achieved based on conversion calculation of transverse relaxation time of NMR. Third, the displacing performance of water flooding and CO2 flooding was investigated. The results characterized by laser confocal indicates that the water flooding has strong scouring capability for free-state oil and CO2 flooding has strong stripping capability for bound-state oil, suggesting CO2 water-alternating-gas injection has unique advantage for EOR. Our work develops a frozen phase technique to realize accurate characterization the residual oil and water saturation and give their original distribution, which could provide basic foundation for EOR design.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs
    Wei, Jianguang
    Yang, Erlong
    Li, Jiangtao
    Liang, Shuang
    Zhou, Xiaofeng
    ENERGY, 2023, 282
  • [2] Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review
    Liu, Zhengshuai
    Liu, Dameng
    Cai, Yidong
    Yao, Yanbin
    Pan, Zhejun
    Zhou, Yingfang
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2020, 218 (218)
  • [3] Investigating the Impact of Aqueous Phase on CO2 Huff 'n' Puff in Tight Oil Reservoirs Using Nuclear Magnetic Resonance Technology: Stimulation Measures and Mechanisms
    Liu, Junrong
    Li, Hangyu
    Liu, Shuyang
    Xu, Jianchun
    Wang, Xiaopu
    Tan, Qizhi
    SPE JOURNAL, 2023, 28 (06): : 3324 - 3340
  • [4] Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology
    Wei, Jianguang
    Zhang, Dong
    Zhang, Xin
    Zhao, Xiaoqing
    Zhou, Runnan
    ENERGY, 2023, 278
  • [5] Online Nuclear Magnetic Resonance Analysis of the Effect of Stress Changes on the Porosity and Permeability of Shale Oil Reservoirs
    Yao, Lanlan
    Lei, Qihong
    Yang, Zhengming
    He, Youan
    Li, Haibo
    Zhao, Guoxi
    Zheng, Zigang
    Hou, Haitao
    Du, Meng
    Cheng, Liangbing
    ENERGIES, 2023, 16 (03)
  • [6] Predicting oil saturation of shale-oil reservoirs using nuclear magnetic resonance logs
    Kuang, Lichun
    Wang, Zhenlin
    Feng, Cheng
    Zhao, Peiqiang
    Mao, Rui
    Yu, Jing
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2020, 8 (03): : SL35 - SL43
  • [7] Experimental study on replacement behavior of crude oil by CO2 based on nuclear magnetic resonance technology
    Li, Baiyang
    Mou, Jianye
    Xu, Shuwen
    Zhang, Shicheng
    Ma, Xinfang
    Zou, Yushi
    Wang, Fei
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2024, 45 (03) : 449 - 460
  • [8] Investigation of the Combination Mechanism of Spontaneous Imbibition and Water Flooding in Tight Oil Reservoirs Based on Nuclear Magnetic Resonance
    Tao, Lei
    Wang, Longlong
    Bai, Jiajia
    Zhang, Na
    Shi, Wenyang
    Zhu, Qingjie
    Xu, Zhengxiao
    Wang, Guoqing
    ENERGIES, 2024, 17 (03)
  • [9] Irreducible water distribution from nuclear magnetic resonance and constant-rate mercury injection methods in tight oil reservoirs
    Chen, Meng
    Li, Min
    Zhao, Jinzhou
    Kuang, Yan
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2018, 17 (04) : 443 - 457
  • [10] Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)
    Zhang, Pengfei
    Lu, Shuangfang
    Li, Junqian
    Chen, Chen
    Xue, Haitao
    Zhang, Jie
    MARINE AND PETROLEUM GEOLOGY, 2018, 89 : 775 - 785