Variable separation solutions for the (2+1)-dimensional breaking soliton equation

被引:0
作者
Hu, Ya-Hong
Lan, Jia-Cheng
Ma, Zheng-Yi [1 ]
机构
[1] Zhejiang Lishui Univ, Coll Math & Phys, Zhejiang Lishui 323000, Peoples R China
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2006年 / 61卷 / 09期
关键词
breaking soliton equation; projective Riccati equation; variable separation solution; soliton;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the variable separation approach and based on the general reduction theory, we successfully obtain the variable separation solutions for the (2+1)-dimensional breaking soliton equation using of the projective Riccati equation. Based on one of the variable separation solutions and by selecting appropriate functions, a new type of interaction between the multi-valued and the single-valued solitons, that is a compacton-like semi-foldon and a 4-compacton, is investigated.
引用
收藏
页码:423 / 429
页数:7
相关论文
共 18 条
[1]  
BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
[2]   ON THE INTEGRABILITY OF SYSTEMS OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH SUPERPOSITION PRINCIPLES [J].
BOUNTIS, TC ;
PAPAGEORGIOU, V ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1215-1224
[3]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26
[4]   LINK BETWEEN SOLITARY WAVES AND PROJECTIVE RICCATI-EQUATIONS [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5609-5623
[5]  
FANG EG, 2002, PHYS LETT A, V277, P212
[6]   NONLINEAR-INTERACTION OF TRAVELING WAVES OF NONINTEGRABLE EQUATIONS [J].
FOKAS, AS ;
LIU, QM .
PHYSICAL REVIEW LETTERS, 1994, 72 (21) :3293-3296
[7]   New kinds of solutions to Gardner equation [J].
Fu, ZT ;
Liu, SD ;
Liu, SK .
CHAOS SOLITONS & FRACTALS, 2004, 20 (02) :301-309
[8]  
Lou S.Y., 1996, J. Phys. A Math. Gen, V29, P4029, DOI [10.1088/0305-4470/29/14/038, DOI 10.1088/0305-4470/29/14/038]
[9]   Formal variable separation approach for nonintegrable models [J].
Lou, SY ;
Chen, LL .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (12) :6491-6500
[10]   Two classes of fractal structures for the (2+1)-dimensional dispersive long wave equation [J].
Ma, ZY ;
Zheng, CL .
CHINESE PHYSICS, 2006, 15 (01) :45-52