An E3 ubiquitin ligase from Brassica napus induces a typical heat-shock response in its own way in Escherichia coli

被引:2
作者
Huang, Fei [1 ]
Niu, Yulong [1 ]
Liu, Zhibin [1 ]
Liu, Weifeng [2 ]
Li, Xufeng [1 ]
Tan, Hong [3 ]
Yang, Yi [1 ]
机构
[1] Sichuan Univ, Coll Life Sci, Minist Educ, Key Lab Bioresources & Ecoenvironm, Chengdu 610065, Peoples R China
[2] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Chengdu Inst Biol, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
E3 ubiquitin ligase; heat-shock response; sigma; 32; thermal resistance; GENE-EXPRESSION; PROTEIN; DENATURATION; PROTECTION; STRESS; KINASE;
D O I
10.1093/abbs/gmx004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previously, we have identified a novel E3 ubiquitin ligase, BNTR1, which plays a key role in heat stress response in Brassica napus. In this study, we accidentally found that BNTR1 can also improve thermal tolerance and reduce growth inhibition at 42 degrees C in Escherichia coli, in a manner different from that in plant. We show that BNTR1 activates E. coli heat-shock response at low concentration in soluble form instead of in inclusion body, but BNTR1 is not functioning as a heatshock protein (HSP) because deficient temperature-sensitive mutants of HSP genes display unconspicuous thermal tolerance in the presence of BNTR1. Our further studies show that BNTR1 triggers heat-shock response by competing with s32 (s32, heat-shock transcription factor) to its binding proteins DnaJ (HSP40) and DnaK (HSP70), which results in the release and accumulation of s32, thereby promoting the heat-shock response, even under the non-heat-shock conditions. At 37 degrees C, accumulation of the HSPs induced by BNTR1 could make cells much more tolerant than those without BNTR1 at 42 degrees C. Thus, our results suggest that BNTR1 may potentially be a promising target in fermentation industry for reducing impact from temperature fluctuation, where E. coli works as bioreactors.
引用
收藏
页码:262 / 269
页数:8
相关论文
共 27 条
[1]   The heat shock response of Escherichia coli [J].
Arsène, F ;
Tomoyasu, T ;
Bukau, B .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2000, 55 (1-3) :3-9
[2]   Recombinant protein folding and misfolding in Escherichia coli [J].
Baneyx, F ;
Mujacic, M .
NATURE BIOTECHNOLOGY, 2004, 22 (11) :1399-1408
[3]   REGULATION OF THE ESCHERICHIA-COLI HEAT-SHOCK RESPONSE [J].
BUKAU, B .
MOLECULAR MICROBIOLOGY, 1993, 9 (04) :671-680
[4]   The transcription unit architecture of the Escherichia coli genome [J].
Cho, Byung-Kwan ;
Zengler, Karsten ;
Qiu, Yu ;
Park, Young Seoub ;
Knight, Eric M. ;
Barrett, Christian L. ;
Gao, Yuan ;
Palsson, Bernhard O. .
NATURE BIOTECHNOLOGY, 2009, 27 (11) :1043-U115
[5]  
DUBOIS MF, 1991, J BIOL CHEM, V266, P9707
[6]   PHYSICAL INTERACTION BETWEEN HEAT-SHOCK PROTEINS DNAK, DNAJ, AND GRPE AND THE BACTERIAL HEAT-SHOCK TRANSCRIPTION FACTOR-SIGMA(32) [J].
GAMER, J ;
BUJARD, H ;
BUKAU, B .
CELL, 1992, 69 (05) :833-842
[7]   Effective high-throughput overproduction of membrane proteins in Escherichia coli [J].
Gordon, Euan ;
Horsefield, Rob ;
Swarts, Herman G. P. ;
de Pont, Jan Joep H. H. M. ;
Neutze, Richard ;
Snijder, Arjan .
PROTEIN EXPRESSION AND PURIFICATION, 2008, 62 (01) :1-8
[8]   Global transcriptome response of recombinant Escherichia coli to heat-shock and dual heat-shock recombinant protein induction [J].
Harcum, Sarah W. ;
Haddadin, Fu'ad T. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2006, 33 (10) :801-814
[9]   Conformational stability and multistate unfolding of poly(A)-specific ribonuclease [J].
He, Guang-Jun ;
Zhang, Ao ;
Liu, Wei-Feng ;
Cheng, Yuan ;
Yan, Yong-Bin .
FEBS JOURNAL, 2009, 276 (10) :2849-2860
[10]   Conformational change in the C-terminal domain is responsible for the initiation of creatine kinase thermal aggregation [J].
He, HW ;
Zhang, J ;
Zhou, HM ;
Yan, YB .
BIOPHYSICAL JOURNAL, 2005, 89 (04) :2650-2658