Bacterial Metabolism and Antibiotic Efficacy

被引:429
作者
Stokes, Jonathan M. [1 ,2 ,3 ,4 ]
Lopatkin, Allison J. [1 ,2 ,3 ,5 ]
Lobritz, Michael A. [6 ]
Collins, James J. [1 ,2 ,3 ,5 ,7 ]
机构
[1] MIT, Dept Biol Engn, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Synthet Biol Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Broad Inst MIT & Harvard, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[4] MIT, Machine Learning Pharmaceut Discovery & Synth Con, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[6] Roche Innovat Ctr Basel, Roche Pharma Res & Early Dev, CH-4070 Basel, Switzerland
[7] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
BETA-LACTAM ANTIBIOTICS; STATIONARY-PHASE; MYCOBACTERIUM-TUBERCULOSIS; ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; CELL-DEATH; CHLORAMPHENICOL; ANTAGONISM; PERSISTERS; RESISTANCE;
D O I
10.1016/j.cmet.2019.06.009
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Antibiotics target energy-consuming processes. As such, perturbations to bacterial metabolic homeostasis are significant consequences of treatment. Here, we describe three postulates that collectively define antibiotic efficacy in the context of bacterial metabolism: (1) antibiotics alter the metabolic state of bacteria, which contributes to the resulting death or stasis; (2) the metabolic state of bacteria influences their susceptibility to antibiotics; and (3) antibiotic efficacy can be enhanced by altering the metabolic state of bacteria. Altogether, we aim to emphasize the close relationship between bacterial metabolism and antibiotic efficacy as well as propose areas of exploration to develop novel antibiotics that optimally exploit bacterial metabolic networks.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 75 条
[1]   Futile cycling increases sensitivity toward oxidative stress in Escherichia coli [J].
Adolfsen, Kristin J. ;
Brynildsen, Mark P. .
METABOLIC ENGINEERING, 2015, 29 :26-35
[2]   Metabolite-enabled eradication of bacterial persisters by aminoglycosides [J].
Allison, Kyle R. ;
Brynildsen, Mark P. ;
Collins, James J. .
NATURE, 2011, 473 (7346) :216-+
[3]   Metabolic Regulation of Mycobacterial Growth and Antibiotic Sensitivity [J].
Baek, Seung-Hun ;
Li, Alice H. ;
Sassetti, Christopher M. .
PLOS BIOLOGY, 2011, 9 (05)
[4]   Antibiotic-associated diarrhoea [J].
Beaugerie, L ;
Petit, JC .
BEST PRACTICE & RESEARCH CLINICAL GASTROENTEROLOGY, 2004, 18 (02) :337-352
[5]   Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage [J].
Belenky, Peter ;
Ye, Jonathan D. ;
Porter, Caroline B. M. ;
Cohen, Nadia R. ;
Lobritz, Michael A. ;
Ferrante, Thomas ;
Jain, Saloni ;
Korry, Benjamin J. ;
Schwarz, Eric G. ;
Walker, Graham C. ;
Collins, James J. .
CELL REPORTS, 2015, 13 (05) :968-980
[6]   Distinguishing between resistance, tolerance and persistence to antibiotic treatment [J].
Brauner, Asher ;
Fridman, Ofer ;
Gefen, Orit ;
Balaban, Nathalie Q. .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (05) :320-330
[7]   Engineering microbial consortia: a new frontier in synthetic biology [J].
Brenner, Katie ;
You, Lingchong ;
Arnold, Frances H. .
TRENDS IN BIOTECHNOLOGY, 2008, 26 (09) :483-489
[8]   Antibacterial drug discovery in the resistance era [J].
Brown, Eric D. ;
Wright, Gerard D. .
NATURE, 2016, 529 (7586) :336-343
[9]   ANTAGONISM BY CHLORAMPHENICOL OF BROAD-SPECTRUM BETA-LACTAM ANTIBIOTICS AGAINST KLEBSIELLA-PNEUMONIAE [J].
BROWN, TH ;
ALFORD, RH .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1984, 25 (04) :405-407
[10]   Microbiota-mediated colonization resistance against intestinal pathogens [J].
Buffie, Charlie G. ;
Pamer, Eric G. .
NATURE REVIEWS IMMUNOLOGY, 2013, 13 (11) :790-801