Detecting the stochastic gravitational wave background with the TianQin detector

被引:11
|
作者
Cheng, Jun [1 ,2 ]
Li, En-Kun [1 ,2 ]
Hu, Yi-Ming [1 ,2 ]
Liang, Zheng-Cheng [1 ,2 ]
Zhang, Jian-dong [1 ,2 ]
Mei, Jianwei [1 ,2 ]
机构
[1] Sun Yat sen Univ, TianQin Res Ctr Gravitat Phys, MOE Key Lab TianQin Mission, Zhuhai Campus, Zhuhai 519082, Peoples R China
[2] Sun Yat Sen Univ, Frontiers Sci Ctr TianQin, Gravitat Wave Res Ctr CNSA, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
基金
中国博士后科学基金;
关键词
RADIATION; SPECTRUM; SEARCH;
D O I
10.1103/PhysRevD.106.124027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The detection of stochastic gravitational wave background (SGWB) is among the leading scientific goals of the space-borne gravitational wave observatory, which would have significant impact on astrophysics and fundamental physics. In this work, we developed a data analysis software, TQSGWB, which can extract isotropic SGWB using the Bayes analysis method based on the TianQin detector. We find that for the noise cross spectrum, there are imaginary components and they play an important role in breaking the degeneracy of the position noise in the common laser link. When the imaginary corrections are considered, the credible regions of the position noise parameters are reduced by two orders of magnitude. We demonstrate that the parameters of various signals and instrumental noise could be estimated directly in the absence of a Galactic confusion foreground through Markov chain Monte Carlo sampling. With only a three-month observation, we find that TianQin could be able to confidently detect SGWBs with energy density as low as aPL = 1.3 x 10-12, aFlat = 6.0 x 10-12, and aSP = 9.0 x 10-12, for power-law, flat, and single-peak models, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background
    Liang, Zheng-Cheng
    Hu, Yi-Ming
    Jiang, Yun
    Cheng, Jun
    Zhang, Jian-dong
    Mei, Jianwei
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [2] Unveiling a multicomponent stochastic gravitational-wave background with the TianQin plus LISA network
    Liang, Zheng-Cheng
    Li, Zhi-Yuan
    Li, En-Kun
    Zhang, Jian-dong
    Hu, Yi-Ming
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [3] Constraining the stochastic gravitational wave background with photometric surveys
    Wang, Yijun
    Pardo, Kris
    Chang, Tzu-Ching
    Dore, Olivier
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [4] MINIMUM REQUIREMENTS FOR DETECTING A STOCHASTIC GRAVITATIONAL WAVE BACKGROUND USING PULSARS
    Cordes, J. M.
    Shannon, R. M.
    ASTROPHYSICAL JOURNAL, 2012, 750 (02)
  • [5] Detecting a stochastic gravitational-wave background: The overlap reduction function
    Finn, Lee Samuel
    Larson, Shane L.
    Romano, Joseph D.
    PHYSICAL REVIEW D, 2009, 79 (06):
  • [6] The Stochastic Gravitational Wave Background from Magnetars
    Chowdhury, Sourav Roy
    Khlopov, Maxim
    UNIVERSE, 2021, 7 (10)
  • [7] Stochastic gravitational wave background: Methods and implications
    van Remortel, Nick
    Janssens, Kamiel
    Turbang, Kevin
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2023, 128
  • [8] Testing the Polarization of Gravitational-wave Background with the LISA-TianQin Network
    Hu, Yu
    Wang, Pan-Pan
    Tan, Yu-Jie
    Shao, Cheng-Gang
    ASTROPHYSICAL JOURNAL, 2024, 961 (01)
  • [9] Interferences in the stochastic gravitational wave background
    Neves da Cunha, Disrael Camargo
    Ringeval, Christophe
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [10] Probing the Universe through the stochastic gravitational wave background
    Kuroyanagi, Sachiko
    Chiba, Takeshi
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):