Enhanced cycle stability of silicon nanoparticles coated with nitrogen-doped carbon layer for lithium-ion battery anode

被引:27
作者
Choi, Hun Seok [1 ]
Kim, Su Jae [1 ]
Choi, Hyun Woo [1 ]
Park, Cheul-Eon [1 ]
Gao, Ying Jun [1 ]
Hang, Yang [1 ]
Jeong, Se-Young [1 ]
Kim, Jong-Pil [3 ]
Bae, Jong-Seong [3 ]
Cho, Chae-Ryong [1 ,2 ]
机构
[1] Pusan Natl Univ, Coll Nanosci & Nanotechnol, Dept Nano Fus Technol, Busan 46241, South Korea
[2] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 46241, South Korea
[3] Korea Basic Sci Inst, Busan Ctr, Div High Tech Mat Res, Busan 46742, South Korea
关键词
Li ion battery; Laser photo-pyrolysis; Si nanoparticle; Nitrogen-doped carbon; Pyrrole; OXYGEN REDUCTION REACTION; LASER PYROLYSIS; HIGH-CAPACITY; NANOCOMPOSITES; GRAPHENE; NANOFIBERS;
D O I
10.1016/j.cap.2017.04.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We prepared single-crystal Si nanoparticles (Si NPs) similar to 50 nm in diameter using a laser photopyrolysis technique and formed a nitrogen-doped carbon layer on them using pyrrole and FeCl3 to increase the cycle stability of the Si anodes during volume expansion and contraction. The surface chemical bonding states of the nitrogen-doped carbon-coated Si NPs were investigated. The specific capacity and capacity retention of the sample with 1 g of FeCl3 were the highest at approximately 967.1 mAh g(-1) and 87.3% after 300 cycles at 1 C, respectively. The diffusion coefficient of Li ions after 1000 test cycles was 9.64 x 10(-8) cm(2) s(-1). The higher cycling stability of the Si@NC NPs could be attributed to the nitrogen doped carbon layers, which provided an efficient transport pathway for the electrons. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1087 / 1093
页数:7
相关论文
共 25 条
[1]   Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence [J].
Beneventi, Davide ;
Alila, Sabrine ;
Boufi, Sami ;
Chaussy, Didier ;
Nortier, Patrice .
CELLULOSE, 2006, 13 (06) :725-734
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[4]   Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications [J].
D'Amato, Rosaria ;
Falconieri, Mauro ;
Gagliardi, Serena ;
Popovici, Ernest ;
Serra, Emanuele ;
Terranova, Gaetano ;
Borsella, Elisabetta .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 104 :461-469
[5]   Alternating current impedance electrochemical modeling of lithium-ion positive electrodes [J].
Dees, D ;
Gunen, E ;
Abraham, D ;
Jansen, A ;
Prakash, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1409-A1417
[6]   Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations [J].
Dimov, N ;
Kugino, S ;
Yoshio, M .
ELECTROCHIMICA ACTA, 2003, 48 (11) :1579-1587
[7]   Determination of the diffusion coefficient of lithium ions in nano-Si [J].
Ding, N. ;
Xu, J. ;
Yao, Y. X. ;
Wegner, G. ;
Fang, X. ;
Chen, C. H. ;
Lieberwirth, I. .
SOLID STATE IONICS, 2009, 180 (2-3) :222-225
[8]  
Haggerty J.S., 1981, LASER INDUCED CHEM P, P165
[9]   Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes [J].
Jeong, Hyung Mo ;
Lee, Jung Woo ;
Shin, Weon Ho ;
Choi, Yoon Jeong ;
Shin, Hyun Joon ;
Kang, Jeung Ku ;
Choi, Jang Wook .
NANO LETTERS, 2011, 11 (06) :2472-2477
[10]   Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries [J].
Kim, Jinwoo ;
Kim, Ji Yoon ;
De Pham-Cong ;
Jeong, Se Young ;
Chang, Jinho ;
Choi, Jun Hee ;
Braun, Paul V. ;
Cho, Chae Ryong .
ELECTROCHIMICA ACTA, 2016, 199 :35-44