Parameters identification of photovoltaic models using modified Rao-1 optimization algorithm

被引:20
作者
Jian, Xianzhong [1 ]
Zhu, Yizhuang [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
来源
OPTIK | 2021年 / 231卷
基金
中国国家自然科学基金;
关键词
Photovoltaic model; Parameter identification; Rao-1; algorithm; Optimization algorithm; PERFORMANCE; EXTRACTION; MODULES; CELLS;
D O I
10.1016/j.ijleo.2021.166439
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Accurate and robust parameter identification method is helpful to the imitation, control and optimization of photovoltaic (PV) system. Therefore, it is necessary to create some more accurate and robust algorithms. A new metaheuristic algorithm modified Rao-1(MRao-1) is proposed by combining Rao-1 with two-way updating strategy based on random individuals. In this strategy, the current or random individuals are chosen as updated starting point and the difference between random individuals is taken as updated direction. MRao-1 inherits the advantages of the original Rao-1 algorithm without additional special parameters and improves the global search ability of Rao-1 significantly without increasing the time complexity of Rao-1. MRao-1 is evaluated on benchmark functions and applied to parameter identification of PV models. The results show that the accuracy and robustness of MRao-1 algorithm are superior to the original algorithm and other recent excellent algorithms. Therefore, MRao-1 is a promising parameter identification algorithm.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm [J].
Abd Elaziz, Mohamed ;
Oliva, Diego .
ENERGY CONVERSION AND MANAGEMENT, 2018, 171 :1843-1859
[2]   A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel [J].
Bastidas-Rodriguez, J. D. ;
Petrone, G. ;
Ramos-Paja, C. A. ;
Spagnuolo, G. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 131 :38-54
[3]   Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation [J].
Chen, Xu ;
Xu, Bin ;
Mei, Congli ;
Ding, Yuhan ;
Li, Kangji .
APPLIED ENERGY, 2018, 212 :1578-1588
[4]   Forecasting of photovoltaic power generation and model optimization: A review [J].
Das, Utpal Kumar ;
Tey, Kok Soon ;
Seyedmahmoudian, Mehdi ;
Mekhilef, Saad ;
Idris, Moh Yamani Idna ;
Van Deventer, Willem ;
Horan, Bend ;
Stojcevski, Alex .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 :912-928
[5]  
Easwarakhanthan T., 1986, International Journal of Solar Energy, V4, P1, DOI 10.1080/01425918608909835
[6]   The numerical computation of lumped parameter values using the multi-dimensional Newton-Raphson method for the characterisation of a multi-junction CPV module using the five-parameter approach [J].
Ghani, F. ;
Fernandez, E. F. ;
Almonacid, F. ;
O'Donovan, T. S. .
SOLAR ENERGY, 2017, 149 :302-313
[7]   An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) [J].
Ishaque, Kashif ;
Salam, Zainal .
SOLAR ENERGY, 2011, 85 (09) :2349-2359
[8]   A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models [J].
Jian, Xianzhong ;
Weng, Zhiyuan .
OPTIK, 2020, 203
[9]   Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules [J].
Jordehi, A. Rezaee .
SOLAR ENERGY, 2018, 159 :78-87
[10]   An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models [J].
Li, Shuijia ;
Gu, Qiong ;
Gong, Wenyin ;
Ning, Bin .
ENERGY CONVERSION AND MANAGEMENT, 2020, 205