Bifurcation analysis of two-dimensional Rayleigh-Benard convection using deflation

被引:9
作者
Boulle, N. [1 ]
Dallas, V [1 ]
Farrell, P. E. [1 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
AUGMENTED LAGRANGIAN PRECONDITIONER; HEAT; FLUID; FLOW;
D O I
10.1103/PhysRevE.105.055106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a bifurcation analysis of the steady states of Rayleigh-Benard convection with no-slip boundary conditions in two dimensions using a numerical method called deflated continuation. By combining this method with an initialization strategy based on the eigenmodes of the conducting state, we are able to discover multiple solutions to this nonlinear problem, including disconnected branches of the bifurcation diagram, without the need for any prior knowledge of the solutions. One of the disconnected branches we find contains an S-shaped curve with hysteresis, which is the origin of a flow pattern that may be related to the dynamics of flow reversals in the turbulent regime. Linear stability analysis is also performed to analyze the steady and unsteady regimes of the solutions in the parameter space and to characterise the type of instabilities.
引用
收藏
页数:16
相关论文
共 56 条
[1]  
Amestoy PR, 2001, LECT NOTES COMPUT SC, V1947, P121
[3]  
Benard H, 1900, CR HEBD ACAD SCI, V130, P1004
[4]  
Benard H, 1927, CR HEBD ACAD SCI, V185, P1109
[5]   Magnetic field reversals in an experimental turbulent dynamo [J].
Berhanu, M. ;
Monchaux, R. ;
Fauve, S. ;
Mordant, N. ;
Petrelis, F. ;
Chiffaudel, A. ;
Daviaud, F. ;
Dubrulle, B. ;
Marie, L. ;
Ravelet, F. ;
Bourgoin, M. ;
Odier, Ph. ;
Pinton, J.-F. ;
Volk, R. .
EPL, 2007, 77 (05)
[6]   Recent developments in Rayleigh-Benard convection [J].
Bodenschatz, E ;
Pesch, W ;
Ahlers, G .
ANNUAL REVIEW OF FLUID MECHANICS, 2000, 32 :709-778
[7]   Extreme multiplicity in cylindrical Rayleigh-Benard convection. II. Bifurcation diagram and symmetry classification [J].
Boronska, Katarzyna ;
Tuckerman, Laurette S. .
PHYSICAL REVIEW E, 2010, 81 (03)
[8]   Extreme multiplicity in cylindrical Rayleigh-Benard convection. I. Time dependence and oscillations [J].
Boronska, Katarzyna ;
Tuckerman, Laurette S. .
PHYSICAL REVIEW E, 2010, 81 (03)
[9]   Deflation-based identification of nonlinear excitations of the three-dimensional Gross-Pitaevskii equation [J].
Boulle, N. ;
Charalampidis, E. G. ;
Farrell, P. E. ;
Kevrekidis, P. G. .
PHYSICAL REVIEW A, 2020, 102 (05)
[10]  
Boussinesq J., 1903, Theorie Analytique De LA Chaleur