Low-Dose X-ray CT Image Reconstruction Based on a Shearlet Transform and Denoising Autoencoder

被引:1
作者
Zhang, Wei [1 ,2 ,3 ]
Teng, Yueyang [1 ]
Wang, Haiyan [2 ]
Kang, Yan [1 ]
机构
[1] Northeastern Univ, Sinodutch Biomed & Informat Engn Sch, Shenyang 110169, Liaoning, Peoples R China
[2] Jilin Normal Univ, Comp Sch, Siping 136000, Peoples R China
[3] Key Lab Numer Simulat Jilin Prov, Siping 136000, Peoples R China
关键词
Low-Dose CT; Deep Learning; Image Denoising; Shearlets; Autoencoder; COMPUTED-TOMOGRAPHY; RESTORATION;
D O I
10.1166/jmihi.2019.2746
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computed tomography (CT) delivers a dose of radiation to the patient with significant risk; however, reducing the radiation dose can introduce noise into CT images, which brings uncertainty to clinical diagnosis. To reduce noise in low-dose CT images, the present paper proposes a deep convolutional neural network (CNN) combined with a shearlet transform and denoising autoencoder. Shearlets can provide more information regarding noisy low-dose CT images than the traditional wavelets for denoising. The residual learning is used to avoid building a complicated regression model for mapping low-dose images to normal-dose images due to the inherently rich details in CT images. The merge connections pass shearlets coefficient details from encoder for better reconstruction while upsampling in the decoder. Experimental results show that the proposed method effectively suppresses noise, thereby preserving the edges and structures in low-dose CT images.
引用
收藏
页码:1469 / 1473
页数:5
相关论文
共 22 条
[1]  
[Anonymous], 2012, P NIPS
[2]  
[Anonymous], 2016, 2016 IEEE 16 INT C D
[3]   Iterative reconstruction methods in X-ray CT [J].
Beister, Marcel ;
Kolditz, Daniel ;
Kalender, Willi A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2012, 28 (02) :94-108
[4]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[5]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[6]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[7]   Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing [J].
Chen, Yang ;
Yin, Xindao ;
Shi, Luyao ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Toumoulin, Christine .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (16) :5803-5820
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   Sparse directional image representations using the discrete shearlet transform [J].
Easley, Glenn ;
Labate, Demetrio ;
Lim, Wang-Q .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (01) :25-46
[10]   Block matching 3D random noise filtering for absorption optical projection tomography [J].
Fumene Feruglio, P. ;
Vinegoni, C. ;
Gros, J. ;
Sbarbati, A. ;
Weissleder, R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (18) :5401-5415