Brownian bridge asymptotics for random p-mappings

被引:16
作者
Aldous, D
Miermont, G
Pitman, J
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Ecole Normale Super, DMA, F-75230 Paris 05, France
关键词
Brownian bridge; Brownian excursion; Joyal map; random mapping; random tree; weak convergence;
D O I
10.1214/EJP.v9-186
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Joyal bijection between doubly-rooted trees and mappings can be lifted to a transformation on function space which takes tree-walks to mapping-walks. Applying known results on weak convergence of random tree walks to Brownian excursion, we give a conceptually simpler rederivation of the Aldous-Pitman (1994) result on convergence of uniform random mapping walks to reflecting Brownian bridge, and extend this result to random p-mappings.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 20 条
[1]  
Aldous D, 2002, NATO SCI SER II-MATH, V77, P113
[2]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[3]   BROWNIAN BRIDGE ASYMPTOTICS FOR RANDOM MAPPINGS [J].
ALDOUS, DJ ;
PITMAN, J .
RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (04) :487-512
[4]  
ALDOUS DJ, 2002, CR MATH ACAD SCI PAR, V334, P1
[5]  
ALDOUS DJ, 2002, 595 UC BERK DEP STAT
[6]  
ALDOUS DJ, 2004, UNPUB WEAK CONVERGEN
[7]  
BERTOIN J, 1994, B SCI MATH, V118, P147
[8]   BROWNIAN BRIDGE ASYMPTOTICS FOR RANDOM MAPPINGS - COMMENTS [J].
BIANE, P .
RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (04) :513-516
[9]  
BIANE P, 1986, ANN I H POINCARE-PR, V22, P1
[10]  
Camarri M., 2000, ELECTRON J PROBAB, V5, P1, DOI DOI 10.1214/EJP.V5-58