Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects

被引:21
|
作者
Miocic, Johannes M. [1 ]
Johnson, Gareth [2 ]
Bond, Clare E. [3 ]
机构
[1] Univ Freiburg, Inst Earth & Environm Sci, Albertstr 23b, D-79104 Freiburg, Germany
[2] Univ Strathclyde, Dept Civil & Environm Engn, James Weir Bldg, Glasgow G1 1XJ, Lanark, Scotland
[3] Univ Aberdeen, Sch Geosci, Dept Geol & Petr Geol, Meston Bldg, Aberdeen AB24 3UE, Scotland
关键词
FLUID-FLOW PROPERTIES; NATURAL CO2; INTERFACIAL-TENSION; SUPERCRITICAL CO2; CAPILLARY-PRESSURE; CONTACT ANGLES; CARBON CAPTURE; SHALE SMEAR; CLAY SMEAR; PERMEABILITY;
D O I
10.5194/se-10-951-2019
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Faults can act as barriers to fluid flow in sedimentary basins, hindering the migration of buoyant fluids in the subsurface, trapping them in reservoirs, and facilitating the build-up of vertical fluid columns. The maximum height of these columns is reliant on the retention potential of the sealing fault with regards to the trapped fluid. Several different approaches for the calculation of maximum supported column height exist for hydrocarbon systems. Here, we translate these approaches to the trapping of carbon dioxide by faults and assess the impact of uncertainties in (i) the wettability properties of the fault rock, (ii) fault rock composition, and (iii) reservoir depth on retention potential. As with hydrocarbon systems, uncertainties associated with the wettability of a CO2-brine-fault rock system for a given reservoir have less of an impact on column heights than uncertainties of fault rock composition. In contrast to hydrocarbon systems, higher phyllosilicate entrainment into the fault rock may reduce the amount of carbon dioxide that can be securely retained due a preferred CO2 wettability of clay minerals. The wettability of the carbon dioxide system is highly sensitive to depth, with a large variation in possible column height predicted at 1000 and 2000 m of depth, which is the likely depth range for carbon storage sites. Our results show that if approaches developed for fault seals in hydrocarbon systems are translated, without modification, to carbon dioxide systems the capacity of carbon storage sites will be inaccurate and the predicted security of storage sites erroneous.
引用
收藏
页码:951 / 967
页数:17
相关论文
共 50 条
  • [1] CO2 Geological Storage - Geotechnical Implications
    Espinoza, D. N.
    Kim, S. H.
    Santamarina, J. C.
    KSCE JOURNAL OF CIVIL ENGINEERING, 2011, 15 (04) : 707 - 719
  • [2] CO2 geological storage — Geotechnical implications
    D. N. Espinoza
    S. H. Kim
    J. C. Santamarina
    KSCE Journal of Civil Engineering, 2011, 15 : 707 - 719
  • [3] Natural CO2 occurrence in geological formations and the implications on CO2 storage capacity and site selection
    Xiao, Yitian
    Macleod, Gordon
    Advocate, David M.
    Reaves, Chris
    Pottorf, Robert J.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4688 - 4695
  • [4] Geological storage of CO2: overseas demonstration projects and its implications to China
    Ren, Shao-Ran
    Zhang, Li
    Zhang, Liang
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2010, 34 (01): : 93 - 98
  • [5] Assessment and uncertainty quantification of onshore geological CO2 storage capacity in China
    Ranaee, Ehsan
    Khattar, Rafi
    Inzoli, Fabio
    Blunt, Martin J.
    Guadagnini, Alberto
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 121
  • [6] Risk Assessment of CO2 Geological Storage and the Calculation of Storage Capacity
    Qi, D.
    Zhang, S.
    Su, K.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2010, 28 (10) : 979 - 986
  • [7] Risk Assessment of CO2 Geological Storage and the Calculation of Storage Capacity
    Qi Dasheng
    Su Kun
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 3170 - 3173
  • [8] On the estimation of CO2 capillary entry pressure: Implications on geological CO2 storage
    Zhou, Yingfang
    Hatzignatiou, Dimitrios G.
    Helland, Johan O.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 63 : 26 - 36
  • [9] CO2 Geological Storage and Utilization
    Huang, Liang
    ATMOSPHERE, 2023, 14 (07)
  • [10] Risk of CO2 Geological Storage
    Uliasz-Misiak, Barbara
    ROCZNIK OCHRONA SRODOWISKA, 2008, 10 : 623 - 632