Evaluating the performance of Bayesian and restricted maximum likelihood estimation for stepped wedge cluster randomized trials with a small number of clusters

被引:9
作者
Grantham, Kelsey L. [1 ]
Kasza, Jessica [1 ]
Heritier, Stephane [1 ]
Carlin, John B. [2 ,3 ]
Forbes, Andrew B. [1 ]
机构
[1] Monash Univ, Sch Publ Hlth & Prevent Med, Melbourne, Vic, Australia
[2] Murdoch Childrens Res Inst, Clin Epidemiol & Biostatist Unit, Parkville, Vic, Australia
[3] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Ctr Epidemiol & Biostatist, Carlton, Vic, Australia
关键词
Bayesian inference; Cluster randomized trial; Intracluster correlation; Restricted maximum likelihood; Simulation study; Stepped wedge; PRIOR DISTRIBUTIONS; DESIGN; APPROXIMATION; TESTS;
D O I
10.1186/s12874-022-01550-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background Stepped wedge trials are an appealing and potentially powerful cluster randomized trial design. However, they are frequently implemented with a small number of clusters. Standard analysis methods for these trials such as a linear mixed model with estimation via maximum likelihood or restricted maximum likelihood (REML) rely on asymptotic properties and have been shown to yield inflated type I error when applied to studies with a small number of clusters. Small-sample methods such as the Kenward-Roger approximation in combination with REML can potentially improve estimation of the fixed effects such as the treatment effect. A Bayesian approach may also be promising for such multilevel models but has not yet seen much application in cluster randomized trials. Methods We conducted a simulation study comparing the performance of REML with and without a Kenward-Roger approximation to a Bayesian approach using weakly informative prior distributions on the intracluster correlation parameters. We considered a continuous outcome and a range of stepped wedge trial configurations with between 4 and 40 clusters. To assess method performance we calculated bias and mean squared error for the treatment effect and correlation parameters and the coverage of 95% confidence/credible intervals and relative percent error in model-based standard error for the treatment effect. Results Both REML with a Kenward-Roger standard error and degrees of freedom correction and the Bayesian method performed similarly well for the estimation of the treatment effect, while intracluster correlation parameter estimates obtained via the Bayesian method were less variable than REML estimates with different relative levels of bias. Conclusions The use of REML with a Kenward-Roger approximation may be sufficient for the analysis of stepped wedge cluster randomized trials with a small number of clusters. However, a Bayesian approach with weakly informative prior distributions on the intracluster correlation parameters offers a viable alternative, particularly when there is interest in the probability-based inferences permitted within this paradigm.
引用
收藏
页数:18
相关论文
共 50 条
[11]   The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research [J].
Goscinski, Wojtek J. ;
McIntosh, Paul ;
Felzmann, Ulrich ;
Maksimenko, Anton ;
Hall, Christopher J. ;
Gureyev, Timur ;
Thompson, Darren ;
Janke, Andrew ;
Galloway, Graham ;
Killeen, Neil E. B. ;
Raniga, Parnesh ;
Kaluza, Owen ;
Ng, Amanda ;
Poudel, Govinda ;
Barnes, David G. ;
Toan Nguyen ;
Bonnington, Paul ;
Egan, Gary f. .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[12]   Accounting for a decaying correlation structure in cluster randomized trials with continuous recruitment [J].
Grantham, Kelsey L. ;
Kasza, Jessica ;
Heritier, Stephane ;
Hemming, Karla ;
Forbes, Andrew B. .
STATISTICS IN MEDICINE, 2019, 38 (11) :1918-1934
[13]   Stepped wedge cluster randomized controlled trial designs: a review of reporting quality and design features [J].
Grayling, Michael J. ;
Wason, James M. S. ;
Mander, Adrian P. .
TRIALS, 2017, 18
[14]  
Halekoh U, 2014, J STAT SOFTW, V59, P1
[15]   The stepped wedge cluster randomised trial: rationale, design, analysis, and reporting [J].
Hemming, K. ;
Haines, T. P. ;
Chilton, P. J. ;
Girling, A. J. ;
Lilford, R. J. .
BMJ-BRITISH MEDICAL JOURNAL, 2015, 350
[16]   Reporting of stepped wedge cluster randomised trials: extension of the CONSORT 2010 statement with explanation and elaboration [J].
Hemming, Karla ;
Taljaard, Monica ;
McKenzie, Joanne E. ;
Hooper, Richard ;
Copas, Andrew ;
Thompson, Jennifer A. ;
Dixon-Woods, Mary ;
Aldcroft, Adrian ;
Doussau, Adelaide ;
Grayling, Michael ;
Kristunas, Caroline ;
Goldstein, Cory E. ;
Campbell, Marion K. ;
Girling, Alan ;
Eldridge, Sandra ;
Campbell, Mike J. ;
Lilford, Richard J. ;
Weijer, Charles ;
Forbes, Andrew B. ;
Grimshaw, Jeremy M. .
BMJ-BRITISH MEDICAL JOURNAL, 2018, 363
[17]   Sample size calculation for stepped wedge and other longitudinal cluster randomised trials [J].
Hooper, Richard ;
Teerenstra, Steven ;
de Hoop, Esther ;
Eldridge, Sandra .
STATISTICS IN MEDICINE, 2016, 35 (26) :4718-4728
[18]   Design and analysis of stepped wedge cluster randomized trials [J].
Hussey, Michael A. ;
Hughes, James P. .
CONTEMPORARY CLINICAL TRIALS, 2007, 28 (02) :182-191
[19]   Bayesian statistics in the design and analysis of cluster randomised controlled trials and their reporting quality: a methodological systematic review [J].
Jones, Benjamin G. ;
Streeter, Adam J. ;
Baker, Amy ;
Moyeed, Rana ;
Creanor, Siobhan .
SYSTEMATIC REVIEWS, 2021, 10 (01)
[20]   Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a review, reanalysis, and simulation study [J].
Kahan, Brennan C. ;
Forbes, Gordon ;
Ali, Yunus ;
Jairath, Vipul ;
Bremner, Stephen ;
Harhay, Michael O. ;
Hooper, Richard ;
Wright, Neil ;
Eldridge, Sandra M. ;
Leyrat, Clemence .
TRIALS, 2016, 17