Illuminating the Reaction Pathways of Viromimetic Assembly

被引:22
作者
Cingil, Hande E. [1 ]
Boz, Emre B. [1 ]
Biondaro, Giovanni [2 ]
de Vries, Renko [1 ]
Stuart, Martien A. Cohen [1 ]
Kraft, Daniela J. [2 ]
van der Schoot, Paul [3 ,4 ]
Sprakel, Joris [1 ]
机构
[1] Wageningen Univ & Res, Phys Chem & Soft Matter, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Leiden Univ, Huygens Kamerling Onnes Lab, Soft Matter Phys, POB 9504, NL-2300 RA Leiden, Netherlands
[3] Eindhoven Univ Technol, Theory Polymers & Soft Matter, POB 513, NL-5600 MB Eindhoven, Netherlands
[4] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
TOBACCO-MOSAIC-VIRUS; PROTEIN; COMPLEXITY; MODEL;
D O I
10.1021/jacs.7b01401
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The coassembly of well-defined biological nanostructures relies on a delicate balance between attractive and repulsive interactions between biomolecular building blocks. Viral capsids are a prototypical example, where coat proteins exhibit not only self-interactions but also interact with the cargo they encapsulate. In nature, the balance between antagonistic and synergistic interactions has evolved to avoid kinetic trapping and polymorphism. To date, it has remained a major challenge to. experimentally disentangle the complex kinetic reaction pathways that underlie successful coassembly of biomolecular building blocks in a:noninvasive approach with high temporal resolution. Here we show how macromolecular force sensors, acting as a genome proxy, allow us to probe the pathways through which a viromimetic protein forms capsids. We uncover the complex multistage process of capsid assembly, which involves recruitment and complexation, followed by allosteric growth of. the proteinaceous coat. Under certain conditions, the single-genome particles condense into capsids, containing multiple copies of the template. Finally, we derive a theoretical. model that quantitatively describes the kinetics of recruitment and growth. These results shed new light on the origins of the pathway complexity in biomolecular coassembly.
引用
收藏
页码:4962 / 4968
页数:7
相关论文
共 32 条
[1]   Controlling supramolecular polymerization through multicomponent self-assembly [J].
Besenius, Pol .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2017, 55 (01) :34-78
[2]   Viral self-assembly as a thermodynamic process [J].
Bruinsma, RF ;
Gelbart, WM ;
Reguera, D ;
Rudnick, J ;
Zandi, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4-248101
[3]  
Butcher J.C., 1963, J. Aust. Math. Soc, V3, P185, DOI DOI 10.1017/S1446788700027932
[4]  
Caspar D L, 1990, Adv Biophys, V26, P157, DOI 10.1016/0065-227X(90)90011-H
[5]   Probing Nanoscale Coassembly with Dual Mechanochromic Sensors [J].
Cingil, Hande E. ;
Boz, Emre B. ;
Wang, Junyou ;
Stuart, Martien A. Cohen ;
Sprakel, Joris .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (09) :1420-1427
[6]   Monitoring Protein Capsid Assembly with a Conjugated Polymer Strain Sensor [J].
Cingil, Hande E. ;
Storm, Ingeborg M. ;
Yorulmaz, Yelda ;
te Brake, Diane W. ;
de Vries, Renko ;
Stuart, Martien A. Cohen ;
Sprakel, Joris .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (31) :9800-9803
[7]   The Assembly Pathway of an Icosahedral Single-Stranded RNA Virus Depends on the Strength of Inter-Subunit Attractions [J].
Garmann, Rees F. ;
Comas-Garcia, Mauricio ;
Gopal, Ajaykumar ;
Knobler, Charles M. ;
Gelbart, William M. .
JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (05) :1050-1060
[8]   Dynamic pathways for viral capsid assembly [J].
Hagan, Michael F. ;
Chandler, David .
BIOPHYSICAL JOURNAL, 2006, 91 (01) :42-54
[9]  
Hernandez-Garcia A, 2014, NAT NANOTECHNOL, V9, P698, DOI [10.1038/NNANO.2014.169, 10.1038/nnano.2014.169]
[10]   STATISTICAL MECHANICS OF MULTIMOLECULAR ADSORPTION .1. [J].
HILL, TL .
JOURNAL OF CHEMICAL PHYSICS, 1946, 14 (04) :263-267