Liouville results for m-Laplace equations of Lane-Emden-Fowler type

被引:77
作者
Damascelli, Lucio [2 ]
Farina, Alberto [1 ]
Sciunzi, Berardino [3 ]
Valdinoci, Enrico [2 ]
机构
[1] Univ Picardie, LAMFA, CNRS UMR 6140, Fac Math & Informat, F-80039 Amiens 1, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Univ Calabria, Dipartimento Matemat, VP Bucci, Arcavacata Di Rende, CS, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 04期
关键词
Degenerate PDEs; Stable solutions; Critical exponents; Rigidity results; DEGENERATE ELLIPTIC-EQUATIONS; STRONG MAXIMUM PRINCIPLE; POSITIVE SOLUTIONS; UNBOUNDED-DOMAINS; LOCAL BEHAVIOR; R-N; REGULARITY; CLASSIFICATION; IDENTITY;
D O I
10.1016/j.anihpc.2008.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider sign changing solutions of the equation -Delta(m)(u) = |u|(p-1) u in possibly unbounded domains or in R-N. We prove Liouville type theorems for stable solutions or for solutions which are stable outside a compact set. The results hold true for in > 2 and in - 1 < P < pc(N, m). Here pc(N, m) is a new critical exponent, which is infinity in low dimension and is always larger than the classical critical one. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1099 / 1119
页数:21
相关论文
共 28 条
[1]  
[Anonymous], 2000, Differ. Integral. Equ
[2]  
[Anonymous], 1931, Q. J. Math, DOI [10.1093/qmath/os-2.1.259, DOI 10.1093/QMATH/OS-2.1.259]
[4]   NONLINEAR ELLIPTIC-EQUATIONS ON COMPACT RIEMANNIAN-MANIFOLDS AND ASYMPTOTICS OF EMDEN EQUATIONS [J].
BIDAUTVERON, MF ;
VERON, L .
INVENTIONES MATHEMATICAE, 1991, 106 (03) :489-539
[5]   Degenerate elliptic equations with singular nonlinearities [J].
Castorina, Daniele ;
Esposito, Pierpaolo ;
Sciunzi, Berardino .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) :279-306
[6]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[7]   Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations [J].
Damascelli, L ;
Sciunzi, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :483-515
[8]   Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations [J].
Damascelli, L ;
Sciunzi, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) :139-159
[9]  
Damascelli L., 2001, Adv. Nonlinear Stud, V1, P40
[10]   SOME NOTES ON THE METHOD OF MOVING PLANES [J].
DANCER, EN .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) :425-434