Periodic Solutions of a System of Nonlinear Difference Equations with Periodic Coefficients

被引:4
作者
Tollu, Durhasan Turgut [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Math & Comp Sci, Fac Sci, Konya, Turkey
关键词
SOLVABLE SYSTEMS; BEHAVIOR;
D O I
10.1155/2020/6636105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dealt with the following system of difference equations x(n+1) = (a(n)/x(n)) + (b(n)/y(n)), y(n+1) = (c(n)/x(n)) + (d(n)/y(n)), where n is an element of N-0 = N boolean OR {0}, the initial values x(0) and y(0) are the positive real numbers, and the sequences (a(n))(n >= 0), (b(n))(n >= 0), (c(n))(n >= 0), and (d(n))(n >= 0) are two-periodic and positive. The system is an extension of a system where every positive solution is two-periodic or converges to a two-periodic solution. Here, the long-term behavior of positive solutions of the system is examined by using a new method to solve the system.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Periodic solutions and invariant torus in the Rossler system [J].
Candido, Murilo R. ;
Novaes, Douglas D. ;
Valls, Claudia .
NONLINEARITY, 2020, 33 (09) :4512-4539
[22]   Time periodic and almost periodic viscosity solutions of contact Hamilton-Jacobi equations on T n [J].
Wang, Kaizhi ;
Yan, Jun ;
Zhao, Kai .
JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (10)
[23]   On Asymptotic Periodic Solutions of Delay Evolution Equations on the Half Line [J].
Ngoc, Nguyen ;
Luong, Vu Trong ;
Hien, Le Van .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2024, 67 (03) :309-325
[24]   On almost periodic mild solutions for stochastic functional differential equations [J].
Cao, Junfei ;
Yang, Qigui ;
Huang, Zaitang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :275-286
[25]   PERIODIC SOLUTIONS FOR SEASONAL SIQRS MODELS WITH NONLINEAR INFECTION TERMS [J].
Guerrero-Flores, Shaday ;
Osuna, Osvaldo ;
Vargas-De-Leon, Cruz .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
[26]   Global stability of a third-order nonlinear system of difference equations with period-two coefficients [J].
Dekkar, Imane ;
Touafek, Nouressadat ;
Yazlik, Yasin .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (02) :325-347
[27]   Periodic boundary value problem for nonlinear Sobolev-type equations [J].
Kaikina, E. I. ;
Naumkin, P. I. ;
Shishmarev, I. A. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) :171-181
[28]   Periodic solutions of a class of degenerate parabolic system with delays [J].
Wang, Yifu ;
Yin, Jingxue .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) :57-68
[29]   μ-Pseudo almost periodic solutions to some semilinear boundary equations on networks [J].
Akrid, Thami ;
Baroun, Mahmoud .
AFRIKA MATEMATIKA, 2024, 35 (01)
[30]   Periodic solutions for a class of neutral functional differential equations with infinite delay [J].
Liu, Guirong ;
Yan, Weiping ;
Yan, Jurang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :604-613