Percolation for the Finitary Random interlacements

被引:4
|
作者
Procaccia, Eviatar B. [1 ,2 ]
Ye, Jiayan [3 ]
Zhang, Yuan [4 ]
机构
[1] Texas A&M Univ, College Stn, TX 77840 USA
[2] Technion Israel Inst Technol, Haifa, Israel
[3] Ben Gurion Univ Negev, Beer Sheva, Israel
[4] Peking Univ, Beijing, Peoples R China
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2021年 / 18卷 / 01期
关键词
RANDOM-WALK; UNIQUENESS;
D O I
10.30757/ALEA.v18-12
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we prove a phase transition in the connectivity of finitary random interlacements FIu,T in Z(d), with respect to the average stopping time T. For each u > 0, with probability one FIu,T has no infinite connected component for all sufficiently small T > 0, and a unique infinite connected component for all sufficiently large T < infinity. This answers a question of Bowen (2019) in the special case of Z(d).
引用
收藏
页码:265 / 287
页数:23
相关论文
共 50 条