SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking

被引:711
作者
Guo, Dongyan [1 ]
Wang, Jun [1 ]
Cui, Ying [1 ]
Wang, Zhenhua [1 ]
Chen, Shengyong [2 ]
机构
[1] Zhejiang Univ Technol, Hangzhou, Peoples R China
[2] Tianjin Univ Technol, Tianjin, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/CVPR42600.2020.00630
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
By decomposing the visual tracking task into two sub-problems as classification for pixel category and regression for object bounding box at this pixel, we propose a novel fully convolutional Siamese network to solve visual tracking end-to-end in a per-pixel manner. The proposed framework SiamCAR consists of two simple subnetworks: one Siamese subnetwork for feature extraction and one classification-regression subnetwork for bounding box prediction. Different from state-of-the-art trackers like Siamese-RPN, SiamRPN++ and SPM, which are based on region proposal, the proposed framework is both proposal and anchor free. Consequently, we are able to avoid the tricky hyper-parameter tuning of anchors and reduce human intervention. The proposed framework is simple, neat and effective. Extensive experiments and comparisons with state-of-the-art trackers are conducted on challenging benchmarks including GOT-10K, LaSOT, UAV123 and OTB-50. Without bells and whistles, our SiamCAR achieves the leading performance with a considerable real-time speed. The code is available at https://github.com/ohhhyeahhh/SiamCAR.
引用
收藏
页码:6268 / 6276
页数:9
相关论文
共 42 条
[1]  
[Anonymous], 2005, BMVC
[2]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[3]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[4]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[5]   ATOM: Accurate Tracking by Overlap Maximization [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4655-4664
[6]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[7]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575
[8]   Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking [J].
Danelljan, Martin ;
Robinson, Andreas ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :472-488
[9]   Learning Spatially Regularized Correlation Filters for Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4310-4318
[10]  
Dong X., 2018, ECCV