Achieving high-temperature strength and plasticity in near-α Ti-7Al-3Zr-2V alloy using cluster formula design

被引:14
作者
Zhu, Zhihao [1 ,2 ]
Liu, Tianyu [3 ]
Dong, Chuang [1 ,2 ,4 ]
Dong, Dandan [5 ]
Zhang, Shuang [4 ]
Wang, Qing [1 ,2 ]
机构
[1] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R China
[3] Shenyang Res Inst Foundry Co Ltd, State Key Lab Light Alloy Casting Technol Highend, Shenyang 110022, Peoples R China
[4] Dalian Jiaotong Univ, Sch Mat Sci & Engn, Shenyang 110022, Peoples R China
[5] Dalian Univ, Coll Phys Sci & Technol, Dalian 116622, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2022年 / 18卷
关键词
Ti alloys; Composition design; Cluster-plus-glue-atom model; Laser additive manufacturing; Mechanical properties; MECHANICAL-PROPERTIES; TI-6AL-4V ALLOY; PHASE-DIAGRAMS; BETA-PHASE; MICROSTRUCTURE; MO; NB; ANISOTROPY; RATES;
D O I
10.1016/j.jmrt.2022.03.158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We here report a Ti-7Al-3Zr-2V alloy, designed following cluster formula approach and prepared by laser additive manufacturing, whose mechanical performance is superior to commonly used Ti-6Al-4V alloy both at as-deposited state and at 600 degrees C. Its composition formula alpha-{[Al-Ti-12](AlTi2)}(15)+beta-{[Al-Ti12Zr2](V-3)}(2) features an enhanced alpha unit proportion of 15/17 (with respect to 12/17 of Ti-6Al-4V) and stabilized beta-Ti via Zr and V alloying. This alloy shows a good laser-additive-manufacturing processibility. At the as-deposited state, its ultimate tensile strength of 1060 MPa, yield strength of 976 MPa, and particularly elongation of 14.9% are all better than those of Ti-6Al-4V. At 600 degrees C, its ultimate tensile strength of 545 MPa, yield strength of 497 MPa, and elongation of 39.7% far exceed the performance of Ti-6Al-4V. After the tensile tests at 600 degrees C, the alpha plate size and its volume fraction remain basically unchanged, in sharp contrast to Ti-6Al-4V. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:2582 / 2592
页数:11
相关论文
共 38 条
  • [1] Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties
    Azarniya, Abolfazl
    Colera, Xabier Garmendia
    Mirzaali, Mohammad J.
    Sovizi, Saeed
    Bartolomeu, Flavio
    Weglowski, Marek St
    Wits, Wessel W.
    Yap, Chor Yen
    Ahn, Joseph
    Miranda, Georgina
    Silva, Filipe Samuel
    Hosseini, Hamid Reza Madaah
    Ramakrishna, Seeram
    Zadpoor, Amir A.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 804 : 163 - 191
  • [2] On the size and orientation effect in additive manufactured Ti-6Al-4V
    Barba, D.
    Alabort, C.
    Tang, Y. T.
    Viscasillas, M. J.
    Reed, R. C.
    Alabort, E.
    [J]. MATERIALS & DESIGN, 2020, 186 (186)
  • [3] Numerical and experimental investigation of fitting tolerance effects on damage and failure of CFRP/Ti double-lap single-bolt joints
    Cao, Yuejie
    Cao, Zengqiang
    Zuo, Yangjie
    Huo, Lubin
    Qiu, Jianping
    Zuo, Duquan
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 78 : 461 - 470
  • [4] High temperature oxidation and embrittlement at 500-600 °C of Ti-6Al-4V alloy fabricated by Laser and Electron Beam Melting
    Casadebaigt, Antoine
    Hugues, Jonathan
    Monceau, Daniel
    [J]. CORROSION SCIENCE, 2020, 175
  • [5] Che JD, 2018, RARE MET MAT ENG, V382, P151
  • [6] Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software
    Dai, Shi-juan
    Wang, Yu
    Chen, Feng
    Yu, Xin-quan
    Zhang, You-fa
    [J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (10) : 3027 - 3032
  • [7] Additive manufacturing of metallic components - Process, structure and properties
    DebRoy, T.
    Wei, H. L.
    Zuback, J. S.
    Mukherjee, T.
    Elmer, J. W.
    Milewski, J. O.
    Beese, A. M.
    Wilson-Heid, A.
    De, A.
    Zhang, W.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2018, 92 : 112 - 224
  • [8] From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses
    Dong, C.
    Wang, Q.
    Qiang, J. B.
    Wang, Y. M.
    Jiang, N.
    Han, G.
    Li, Y. H.
    Wu, J.
    Xia, J. H.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (15) : R273 - R291
  • [9] Review of structural models for the compositional interpretation of metallic glasses
    Dong, Chuang
    Wang, Zi-Jian
    Zhang, Shuang
    Wang, Ying-Min
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2020, 65 (05) : 286 - 296
  • [10] Chemical Units in Solid Solutions and Alloy Composition Design
    Dong Chuang
    Dong Dandan
    Wang Qing
    [J]. ACTA METALLURGICA SINICA, 2018, 54 (02) : 293 - 300