Statistics for Gaussian random fields with unknown location and scale using Lipschitz-Killing curvatures

被引:6
作者
Di Bernardino, Elena [1 ]
Duval, Celine [2 ]
机构
[1] Univ Cote Azur, UMR CNRS 7351, Lab JA Dieudonne, Parc Valrose, F-06108 Nice 2, France
[2] Univ Paris, MAP5 UMR 8145, Paris, France
关键词
excursion sets; geometric inference; image analysis; CENTRAL LIMIT-THEOREMS; EXCURSION SETS; MINKOWSKI FUNCTIONALS; GENUS TOPOLOGY; FORMULA;
D O I
10.1111/sjos.12500
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the present article we study the average of Lipschitz-Killing (LK) curvatures of the excursion set of a stationary isotropic Gaussian field X on Double-struck capital R2. The novelty is that the field can be nonstandard, that is, with unknown mean and variance, which is more realistic from an applied viewpoint. To cope with the unknown location and scale parameters of X, we introduce novel fundamental quantities called effective level and effective spectral moment. We propose unbiased and asymptotically normal estimators of these parameters. From these asymptotic results, we build a test to determine if two images of excursion sets can be compared. This test is applied on both synthesized and real mammograms. Meanwhile, we establish the consistency of the empirical variance estimators of the third LK curvature under a weak condition on the correlation function of X.
引用
收藏
页码:143 / 184
页数:42
相关论文
共 41 条
[1]   Planck 2015 results XVI. Isotropy and statistics of the CMB [J].
Ade, P. A. R. ;
Aghanim, N. ;
Akrami, Y. ;
Aluri, P. K. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Casaponsa, B. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Cruz, M. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]  
Adler R.J., 2007, RANDOM FIELDS GEOMET
[3]   ROTATION AND SCALE SPACE RANDOM FIELDS AND THE GAUSSIAN KINEMATIC FORMULA [J].
Adler, Robert J. ;
Subag, Eliran ;
Taylor, Jonathan E. .
ANNALS OF STATISTICS, 2012, 40 (06) :2910-2942
[4]  
[Anonymous], 2011, LECT NOTES MATH
[5]  
Azais J.-M., 2009, Level sets and extrema of random processes and fields
[6]   Discretization error for the maximum of a Gaussian field [J].
Azais, Jean-Marc ;
Chassan, Malika .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (02) :545-559
[7]   Asymptotic formula for the tail of the maximum of smooth stationary Gaussian fields on non locally convex sets [J].
Azais, Jean-Marc ;
Viet-Hung Pham .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (05) :1385-1411
[8]  
Berzin C., 2018, ARXIVEPRINTS18010376
[9]   Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields [J].
Bierme, Hermine ;
Di Bernardino, Elena ;
Duval, Celine ;
Estrade, Anne .
ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01) :536-581
[10]   ON THE PERIMETER OF EXCURSION SETS OF SHOT NOISE RANDOM FIELDS [J].
Bierme, Hermine ;
Desolneux, Agnes .
ANNALS OF PROBABILITY, 2016, 44 (01) :521-543