Locally Farkas-Minkowski systems in convex semi-infinite programming

被引:24
作者
Fajardo, MD [1 ]
López, MA [1 ]
机构
[1] Univ Alicante, Fac Sci, Dept Stat & Operat Res, E-03080 Alicante, Spain
关键词
convex semi-infinite programming; constraint qualifications; subdifferential mappings; Valadier formula; monotone operators; locally Farkas-Minkowski systems;
D O I
10.1023/A:1021700702376
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A pair of constraint qualifications in convex semi-infinite programming, namely the locally Farkas-Minkowski constraint qualification and generalized Slater constraint qualification, are studied in the paper. We analyze the relationship between them, as well as the behavior of the so-called active and sup-active mappings, accounting for the tightness of the constraint system at each point of the variables space. The generalized Slater constraint qualification guarantees a regular behavior of the supremum function (defined as supremum of the infinitely many functions involved in the constraint system), giving rise to the well-known Valadier formula.
引用
收藏
页码:313 / 335
页数:23
相关论文
共 10 条
[1]  
[Anonymous], 1991, CONVEX ANAL MINIMIZA
[2]  
[Anonymous], 1993, CONVEX FUNCTIONS
[3]  
BORWEIN JM, 1983, LECT NOTES ECON MATH, V215, P10
[4]   Stability theory for linear inequality systems [J].
Goberna, MA ;
Lopez, MA ;
Todorov, M .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :730-743
[5]  
Goberna MA., 1998, LINEAR SEMIINFINITE
[6]   OPTIMALITY CONDITIONS FOR NONDIFFERENTIABLE CONVEX SEMI-INFINITE PROGRAMMING [J].
LOPEZ, MA ;
VERCHER, E .
MATHEMATICAL PROGRAMMING, 1983, 27 (03) :307-319
[7]   Locally Farkas-Minkowski linear inequality systems [J].
Rubén Puente ;
Virginia N. Vera de Serio .
Top, 1999, 7 (1) :103-121
[8]  
Rockafellar R.T., CONVEX ANAL
[9]  
VOLLE M, 1993, CR ACAD SCI I-MATH, V317, P845
[10]  
Wets R., 2004, VARIATIONAL ANAL