A Yamabe type problem on compact spin manifolds

被引:3
作者
Ammann, B
Humbert, E
Morel, B
机构
[1] Univ Bonn, Inst Math, D-53115 Bonn, Germany
[2] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1016/j.crma.2004.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g, sigma) be a compact spin manifold of dimension n greater than or equal to 2. Let lambda(1)(+)((g) over tilde) be the smallest positive eigenvalue of the Dirac operator in the metric (g) over tilde is an element of [g] conformal to g. We then define lambda(min)(+)(M, [g], sigma) = inf((g) over tilde is an element of[g]) lambda(1)(+)((g) over tilde) Vol(M, (g) over tilde)(1/n). We show that 0 < lambda(min)(+)(m, [g], sigma) less than or equal to lambda(min)(+)(S-n). We find sufficient conditions for which we obtain strict inequality lambda(min)(+)(M, [g], sigma) < lambda(min)(+)(S-n). This strict inequality has applications to conformal spin geometry. (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.
引用
收藏
页码:929 / 934
页数:6
相关论文
共 15 条
[11]  
HIJAZI O, 1991, CR ACAD SCI I-MATH, V313, P865
[12]   THE YAMABE PROBLEM [J].
LEE, JM ;
PARKER, TH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :37-91
[13]   EIGENVALUE BOUNDS FOR THE DIRAC OPERATOR [J].
LOTT, J .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 125 (01) :117-126
[14]   Critical metrics for the determinant of the Laplacian in odd dimensions [J].
Okikiolu, K .
ANNALS OF MATHEMATICS, 2001, 153 (02) :471-531
[15]  
SCHOEN R, 1984, J DIFFER GEOM, V20, P479