A Yamabe type problem on compact spin manifolds

被引:3
作者
Ammann, B
Humbert, E
Morel, B
机构
[1] Univ Bonn, Inst Math, D-53115 Bonn, Germany
[2] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1016/j.crma.2004.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g, sigma) be a compact spin manifold of dimension n greater than or equal to 2. Let lambda(1)(+)((g) over tilde) be the smallest positive eigenvalue of the Dirac operator in the metric (g) over tilde is an element of [g] conformal to g. We then define lambda(min)(+)(M, [g], sigma) = inf((g) over tilde is an element of[g]) lambda(1)(+)((g) over tilde) Vol(M, (g) over tilde)(1/n). We show that 0 < lambda(min)(+)(m, [g], sigma) less than or equal to lambda(min)(+)(S-n). We find sufficient conditions for which we obtain strict inequality lambda(min)(+)(M, [g], sigma) < lambda(min)(+)(S-n). This strict inequality has applications to conformal spin geometry. (C) 2004 Academie des sciences. Publie par Elsevier SAS. Tous droits reserves.
引用
收藏
页码:929 / 934
页数:6
相关论文
共 15 条
[1]   A spin-conformal lower bound of the first positive Dirac eigenvalue [J].
Ammann, B .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (01) :21-32
[2]  
AMMANN B, MATHDG0309061
[3]  
Ammann B., 2003, VARIATIONAL PROBLEM
[4]  
AMMANN B, 2003, MASS ENDOMORPHISM SP
[5]  
AMMANN B, MATHDG0308107
[6]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[7]   LOWER EIGENVALUE ESTIMATES FOR DIRAC OPERATORS [J].
BAR, C .
MATHEMATISCHE ANNALEN, 1992, 293 (01) :39-46
[8]   SPINOR, DIRAC OPERATOR AND CHANGE OF THE METRIC [J].
BOURGUIGNON, JP ;
GAUDUCHON, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :581-599
[9]  
HEBEY E, 1997, INTRO ANAL NONLINEAI