Clinical applications of CRISPR-based genome editing and diagnostics

被引:30
|
作者
Foss, Dana V. [1 ,2 ]
Hochstrasser, Megan L. [1 ]
Wilson, Ross C. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Innovat Genom Inst, 2151 Berkeley Way, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
关键词
RNA-GUIDED ENDONUCLEASE; NUCLEIC-ACID DETECTION; IN-VIVO DELIVERY; GENE-THERAPY; HUMAN-CELLS; NEXT-GENERATION; DNA-REPAIR; TARGET; CAS9; MULTIPLEX;
D O I
10.1111/trf.15126
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR)-driven genome editing has rapidly transformed preclinical biomedical research by eliminating the underlying genetic basis of many diseases in model systems and facilitating the study of disease etiology. Translation to the clinic is under way, with announced or impending clinical trials utilizing ex vivo strategies for anticancer immunotherapy or correction of hemoglobinopathies. These exciting applications represent just a fraction of what is theoretically possible for this emerging technology, but many technical hurdles must be overcome before CRISPR-based genome editing technology can reach its full potential. One exciting recent development is the use of CRISPR systems for diagnostic detection of genetic sequences associated with pathogens or cancer. We review the biologic origins and functional mechanism of CRISPR systems and highlight several current and future clinical applications of genome editing.
引用
收藏
页码:1389 / 1399
页数:11
相关论文
共 50 条
  • [1] Basic Principles and Clinical Applications of CRISPR-Based Genome Editing
    Lim, Jung Min
    Kim, Hyongbum Henry
    YONSEI MEDICAL JOURNAL, 2022, 63 (02) : 105 - 113
  • [2] In Vivo Applications of CRISPR-Based Genome Editing in the Retina
    Yu, Wenhan
    Wu, Zhijian
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2018, 6
  • [3] CRISPR-Based Genome Editing and Its Applications in Woody Plants
    Min, Tian
    Hwarari, Delight
    Li, Dong'ao
    Movahedi, Ali
    Yang, Liming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [4] CRISPR-based genome editing of zebrafish
    Sharma, Preeti
    Sharma, B. Sharan
    Verma, Ramtej J.
    REPROGRAMMING THE GENOME: APPLICATIONS OF CRISPR-CAS IN NON-MAMMALIAN SYSTEMS, PT B, 2021, 180 : 69 - 84
  • [5] CRISPR-based genome editing technology and its applications in oil crops
    Jianjie He
    Kai Zhang
    Mi Tang
    Weixian Zhou
    Liurong Chen
    Zhaobo Chen
    Maoteng Li
    OilCropScience, 2021, 6 (03) : 105 - 113
  • [6] CRISPR-based genome editing in disease treatment
    Qin, Huan
    Xu, Weihui
    Yao, Kai
    TRENDS IN MOLECULAR MEDICINE, 2023, 29 (08) : 673 - 674
  • [7] CRISPR-based epigenome editing: mechanisms and applications
    Fadul, Shaima M.
    Arshad, Aleeza
    Mehmood, Rashid
    EPIGENOMICS, 2023, 15 (21) : 1137 - 1155
  • [8] Carrot genome editing using CRISPR-based systems
    Klimek-Chodacka, M.
    Oleszkiewicz, T.
    Qi, Y.
    Baranski, R.
    PROCEEDINGS OF THE II INTERNATIONAL SYMPOSIUM ON CARROT AND OTHER APIACEAE, 2019, 1264 : 53 - 65
  • [9] A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila
    Xu, Jiang
    Ren, Xingjie
    Sun, Jin
    Wang, Xia
    Qiao, Huan-Huan
    Xu, Bo-Wen
    Liu, Lu-Ping
    Ni, Jian-Quan
    JOURNAL OF GENETICS AND GENOMICS, 2015, 42 (04) : 141 - 149
  • [10] A critical look on CRISPR-based genome editing in plants
    Ahmad, Niaz
    Rahman, Mehboob-ur
    Mukhtar, Zahid
    Zafar, Yusuf
    Zhang, Baohong
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (02) : 666 - 682