Effects of inclination angle and operation parameters on supercritical CO2 natural circulation loop

被引:24
作者
Chen, Lin [1 ]
Zhang, Xin-Rong [1 ,2 ]
Deng, Bi-Li [1 ]
Jiang, Bin [1 ]
机构
[1] Peking Univ, Dept Energy & Resources Engn, Coll Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Beijing Key Lab Solid Waste Utilizat & Management, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
SOLAR WATER-HEATER; CONVECTIVE FLOW; STABILITY BOUNDARY; PERFORMANCE; SINGLE; SYSTEM; INSTABILITIES; PRESSURE; REACTOR;
D O I
10.1016/j.nucengdes.2013.06.037
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Supercritical fluid based natural circulation flow has been proposed in many energy conversion systems such as solar collector, waste heat recovery, nuclear cooling, etc. The current study is focused on the effect of inclination angle and operation parameters on supercritical CO2 based natural circulation loops. In this study, two-dimensional numerical simulation has been carried out with turbulent model incorporated. Then, a supercritical natural circulation loop system has been established, experimented and also compared with previous studies. In the numerical simulation, the flow condition is found closely related to the heat influx and inclination angle: Under high heat flux conditions the system show stable flow, while relative low heat flux conditions show complex unstable behaviors. Also it is found that when the inclination angle is greater than 60, the effect of inclination on the flow state is not significant. In the experiments, supercritical cases are found stable under the current operation range. The steady operation pressure inside the NCL changes greatly due to the sensitive fluid properties and the effect of inclination on real systems show similar rend with numerical results. Judging from both the numerical and experimental results, larger inclination angles will have higher circulation rate and better heat transfer performance. New correlation for supercritical CO2 NCL flows is also experimentally proposed in this study. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:895 / 908
页数:14
相关论文
共 44 条
[1]   SINGLE-PHASE NATURAL CIRCULATION IN A TILTED SQUARE LOOP [J].
ACOSTA, R ;
SEN, M ;
RAMOS, E .
WARME UND STOFFUBERTRAGUNG-THERMO AND FLUID DYNAMICS, 1987, 21 (05) :269-275
[2]   On the analogies in the dynamic behaviour of heated channels with boiling and supercritical fluids [J].
Ambrosini, Walter .
NUCLEAR ENGINEERING AND DESIGN, 2007, 237 (11) :1164-1174
[3]  
[Anonymous], 2006, NIST STAND REF DAT R
[4]  
Bontemps A., 1987, P 6 INT HEAT PIP C, P634
[5]   Stability maps for rectangular circulation loops [J].
Cammarata, L ;
Fichera, A ;
Pagano, A .
APPLIED THERMAL ENGINEERING, 2003, 23 (08) :965-977
[6]   The stability boundary for supercritical flow in natural-convection loops Part II:: CO2 and H2 [J].
Chatoorgoon, V ;
Voodi, A ;
Upadhye, P .
NUCLEAR ENGINEERING AND DESIGN, 2005, 235 (24) :2581-2593
[7]   The stability boundary for supercritical flow in natural convection loops Part I:: H2O studies [J].
Chatoorgoon, V ;
Voodi, A ;
Fraser, D .
NUCLEAR ENGINEERING AND DESIGN, 2005, 235 (24) :2570-2580
[8]   Stability of supercritical fluid flow in a single-channel natural-convection loop [J].
Chatoorgoon, V .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (10) :1963-1972
[9]   Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop [J].
Chen, Lin ;
Deng, Bi-Li ;
Zhang, Xin-Rong .
APPLIED THERMAL ENGINEERING, 2013, 59 (1-2) :1-13
[10]   Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region [J].
Chen, Lin ;
Deng, Bi-Li ;
Zhang, Xin-Rong .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 64 :202-211