A description of auto-fixed subgroups in a free group

被引:5
作者
Martino, A
Ventura, E
机构
[1] Univ Politecn Cataluna, Dept Math Appl 3, Barcelona 08240, Catalunya, Spain
[2] Univ Southampton, Dept Math, Southampton SO9 5NH, Hants, England
[3] CUNY City Coll, Dept Math, New York, NY 10031 USA
基金
英国工程与自然科学研究理事会;
关键词
free group; automorphism; fixed subgroup; eigengroup;
D O I
10.1016/j.top.2004.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a finitely generated free group. Using Bestvina-Handel's theory of train tracks and improvements upon it, the eigengroups of arbitrary automorphisms of F are analysed globally. In particular, an explicit description of all subgroups of F which occur as the fixed subgroup of some automorphism is given. (C) 2004 Published by Elsevier Ltd.
引用
收藏
页码:1133 / 1164
页数:32
相关论文
共 19 条
[1]   Supports of derivations, free factorizations, and ranks of fixed subgroups in free groups [J].
Bergman, GM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) :1531-1550
[2]   The Tits alternative for out(Fn) I:: Dynamics of exponentially-growing automorphisms [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
ANNALS OF MATHEMATICS, 2000, 151 (02) :517-623
[3]   TRAIN TRACKS AND AUTOMORPHISMS OF FREE GROUPS [J].
BESTVINA, M ;
HANDEL, M .
ANNALS OF MATHEMATICS, 1992, 135 (01) :1-51
[4]   All automorphisms of free groups with maximal rank fixed subgroups [J].
Collins, DJ ;
Turner, EC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 :615-630
[5]  
DICKS W, 1996, CONT MATH, V195, P1
[6]   A dendrological proof of the Scott conjecture for automorphisms of free groups [J].
Gaboriau, D ;
Levitt, G ;
Lustig, M .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 :325-332
[7]  
HIGGINS PJ, 1971, VANNOSTRAND RIENHOLD, V32
[8]   ENDOMORPHISMS OF FREE GROUPS AND THEIR FIXED-POINTS [J].
IMRICH, W ;
TURNER, EC .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 :421-422
[9]  
LUSTIG M, STRUCTURE CONJUGACY, V1
[10]  
LUSTIG M, STRUCTURE CONJUGACY, V2