Generative and self-supervised domain adaptation for one-stage object detection

被引:4
作者
Fujii, Kazuma [1 ]
Kawamoto, Kazuhiko [1 ]
机构
[1] Chiba Univ, 1-33 Yayoicho, Chiba, Chiba 2638522, Japan
关键词
Domain adaptation; Object detection; Unsupervised learning;
D O I
10.1016/j.array.2021.100071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Unsupervised cross-domain object detection has recently attracted considerable attention because of its ability to significantly reduce annotation costs. For two-stage detectors, several improvements have been made in featurelevel adaptations. However, this approach is not suitable for one-stage detectors that do not have access to instance-level features. Although other approaches are often used for one-stage detectors, their performance is insufficient compared to domain adaptation methods for two-stage detectors. In this study, we propose a generative and self-supervised domain adaptation method for one-stage detectors. The proposed method is composed of an adversarial generative method and a self-supervision-based method. We tested our method on three evaluation datasets, and an improvement in the mean average precision was achieved using this method. We also confirmed the complementary effects of an adversarial generative method and a self-supervision-based method.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[2]   Harmonizing Transferability and Discriminability for Adapting Object Detectors [J].
Chen, Chaoqi ;
Zheng, Zebiao ;
Ding, Xinghao ;
Huang, Yue ;
Dou, Qi .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :8866-8875
[3]   Domain Adaptive Faster R-CNN for Object Detection in the Wild [J].
Chen, Yuhua ;
Li, Wen ;
Sakaridis, Christos ;
Dai, Dengxin ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3339-3348
[4]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[5]  
Fu MH, 2020, Arxiv, DOI arXiv:2004.02093
[6]   Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J].
Ghifary, Muhammad ;
Kleijn, W. Bastiaan ;
Zhang, Mengjie ;
Balduzzi, David ;
Li, Wen .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :597-613
[7]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[8]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]  
Heusel M, 2017, ADV NEUR IN, V30