A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

被引:62
作者
Bao, Weizhu [1 ]
Jiang, Wei [2 ,3 ]
Wang, Yan [1 ]
Zhao, Quan [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state dewetting; Surface diffusion; Contact line migration; Anisotropic surface energy; Parametric finite element method; CAHN-HILLIARD EQUATION; CAPILLARY INSTABILITIES; APPROXIMATION; THIN; EVOLUTION; DIFFUSION; GROWTH; CURVATURE; PARTICLE; CONTACT;
D O I
10.1016/j.jcp.2016.11.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:380 / 400
页数:21
相关论文
共 57 条
[1]   Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look [J].
Armelao, Lidia ;
Barreca, Davide ;
Bottaro, Gregorio ;
Gasparotto, Alberto ;
Gross, Silvia ;
Maragno, Cinzia ;
Tondello, Eugenio .
COORDINATION CHEMISTRY REVIEWS, 2006, 250 (11-12) :1294-1314
[2]   A finite element method for surface diffusion:: the parametric case [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :321-343
[3]   Surface diffusion of graphs:: Variational formulation, error analysis, and simulation [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :773-799
[4]  
Bao W., 2016, ARXIV160808481
[5]   Numerical approximation of anisotropic geometric evolution equations in the plane [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (02) :292-330
[6]   On the parametric finite element approximation of evolving hypersurfaces in R3 [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) :4281-4307
[7]   On the variational approximation of combined second and fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03) :1006-1041
[8]   A parametric finite element method for fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 222 (01) :441-467
[9]   On the stable discretization of strongly anisotropic phase field models with applications to crystal growth [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (10-11) :719-732
[10]   Finite-element approximation of coupled surface and grain boundary motion with applications to thermal grooving and sintering [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2010, 21 (06) :519-556