Diffuse-interface modeling of liquid-vapor phase separation in a van der Waals fluid

被引:26
作者
Lamorgese, A. G. [1 ]
Mauri, R. [2 ]
机构
[1] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
[2] Univ Pisa, Dept Chem Engn Ind Chem & Mat Sci, I-56126 Pisa, Italy
关键词
diffusion; free energy; Korteweg-de Vries equation; liquid-vapour transformations; nonequilibrium thermodynamics; phase diagrams; phase separation; spinodal decomposition; van der Waals forces; SPINODAL DECOMPOSITION; LATTICE BOLTZMANN; BINARY-MIXTURES; CRITICAL-POINT; DYNAMICS; SEGREGATION; SIMULATION; FIELD; GAS;
D O I
10.1063/1.3103826
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We simulate liquid-vapor phase separation in a van der Waals fluid that is deeply quenched into the unstable range of its phase diagram. Our theoretical approach follows the diffuse-interface model, where convection induced by phase change is accounted for via a nonequilibrium (Korteweg) force expressing the tendency of the liquid-vapor system to minimize its free energy. Spinodal decomposition patterns for critical and off-critical van der Waals fluids are studied numerically, revealing the scaling laws of the characteristic length scale and composition of single-phase microdomains, together with their dependence on the Reynolds number. Unlike phase separation of viscous binary mixtures, here local equilibrium is reached almost immediately after single-phase domains start to form. In addition, as predicted by scaling laws, such domains grow in time like t(2/3). Comparison between 2D and 3D results reveals that 2D simulations capture, even quantitatively, the main features of the phenomenon.
引用
收藏
页数:8
相关论文
共 39 条
  • [1] Diffuse-interface methods in fluid mechanics
    Anderson, DM
    McFadden, GB
    Wheeler, AA
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 : 139 - 165
  • [2] Microscale theory of surface tension
    Antanovskii, LK
    [J]. PHYSICAL REVIEW E, 1996, 54 (06): : 6285 - 6290
  • [3] PHASE-SEPARATION IN A 3-DIMENSIONAL, 2-PHASE, HYDRODYNAMIC LATTICE-GAS
    APPERT, C
    OLSON, JF
    ROTHMAN, DH
    ZALESKI, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 81 (1-2) : 181 - 197
  • [4] Computation of multiphase systems with phase field models
    Badalassi, VE
    Ceniceros, HD
    Banerjee, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) : 371 - 397
  • [5] Liquid-vapor phase separation in a thermocapillary force field
    Beysens, D
    Garrabos, Y
    Nikolayev, VS
    Lecoutre-Chabot, C
    Delville, JP
    Hegseth, J
    [J]. EUROPHYSICS LETTERS, 2002, 59 (02): : 245 - 251
  • [6] Phase-field simulations for drops and bubbles
    Borcia, Rodica
    Bestehorn, Michael
    [J]. PHYSICAL REVIEW E, 2007, 75 (05):
  • [7] Drop size evolution during the phase separation of liquid mixtures
    Califano, F
    Mauri, R
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (02) : 349 - 353
  • [8] Lattice Boltzmann study of spinodal decomposition in two dimensions
    Chin, J
    Coveney, PV
    [J]. PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 016303
  • [9] de Groot S.R., 1984, NONEQUILIBRIUM THERM
  • [10] DYNAMICS OF DIFFUSE GAS-LIQUID INTERFACE NEAR CRITICAL POINT
    FELDERHO.BU
    [J]. PHYSICA, 1970, 48 (04): : 541 - &