Multigrid computation of axisymmetric electromagnetic fields

被引:12
作者
Börm, S
Hiptmair, R
机构
[1] Univ Kiel, Inst Prakt Math, D-24098 Kiel, Germany
[2] Univ Tubingen, Sonderforsch Bereich 382, D-72074 Tubingen, Germany
关键词
computational electromagnetism; multigrid; edge elements; vector valued problems; semi-coarsening; cylindrical symmetry; degenerate problems;
D O I
10.1023/A:1014533409747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this paper is on boundary value problems for Maxwell's equations that feature cylindrical symmetry both of the domain Omega subset of R-3 and the data. Thus, by resorting to cylindrical coordinates, a reduction to two dimensions is possible. However, cylindrical coordinates introduce a potentially malicious singularity at the axis rendering the variational problems degenerate. As a consequence, the analysis of multigrid solvers along the lines of variational multigrid theory confronts severe difficulties. Line relaxation in radial direction and semicoarsening can successfully reign in the degeneracy. In addition, the lack of H-1-ellipticity of the double-curl operator entails using special hybrid smoothing procedures, All these techniques combined yield a fast multigrid solver. The theoretical investigation of the method relies on blending generalized Fourier techniques and modern variational multigrid theory. We first determine invariant subspaces of the multigrid iteration operator and analyze the smoothers therein. Under certain assumptions on the material parameters we manage to show uniform convergence of a symmetric V-cycle.
引用
收藏
页码:331 / 356
页数:26
相关论文
共 50 条
[1]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[2]   Preconditioning in H(div) and applications [J].
Arnold, DN ;
Falk, RS ;
Winther, R .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :957-984
[3]  
Beck R., 1998, SURVEYS MATH IND, V8, P271
[4]   Analysis of tensor product multigrid [J].
Börm, S ;
Hiptmair, R .
NUMERICAL ALGORITHMS, 2001, 26 (03) :219-234
[5]  
Bossavit A., 1992, MECCANICA, V27, P3
[6]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[7]  
Bramble J. H., 1993, PITMAN RES NOTES MAT, V294
[8]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[9]   THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :467-488
[10]  
Ciarlet PG, 1978, STUDIES MATH ITS APP, V4