Flexible and scalable genotyping-by-sequencing strategies for population studies

被引:38
作者
Heffelfinger, Christopher [1 ]
Fragoso, Christopher A. [1 ,2 ]
Moreno, Maria A. [1 ]
Overton, John D. [3 ]
Mottinger, John P. [4 ]
Zhao, Hongyu [2 ]
Tohme, Joe [5 ]
Dellaporta, Stephen L. [1 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06511 USA
[2] Yale Univ, Dept Computat Biol & Bioinformat, New Haven, CT 06520 USA
[3] Yale Univ, Yale Ctr Genome Anal, New Haven, CT 06516 USA
[4] Univ Rhode Isl, Dept Cell & Mol Biol, Kingston, RI 02881 USA
[5] Ctr Int Agr Trop, Agrobiodivers Res Area, Cali, Colombia
来源
BMC GENOMICS | 2014年 / 15卷
基金
比尔及梅琳达.盖茨基金会; 美国国家科学基金会;
关键词
Genotyping; GBS; Reduced representation sequencing; Population genomics; Trait mapping; Plant breeding; Agricultural genomics; GENOMIC PREDICTION; TARGETED CAPTURE; SNP DISCOVERY; GENERATION; IMPUTATION; MARKERS; POLYMORPHISM; ALGORITHMS; ALIGNMENT; DENSITY;
D O I
10.1186/1471-2164-15-979
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Many areas critical to agricultural production and research, such as the breeding and trait mapping in plants and livestock, require robust and scalable genotyping platforms. Genotyping-by-sequencing (GBS) is a one such method highly suited to non-human organisms. In the GBS protocol, genomic DNA is fractionated via restriction digest, then reduced representation is achieved through size selection. Since many restriction sites are conserved across a species, the sequenced portion of the genome is highly consistent within a population. This makes the GBS protocol highly suited for experiments that require surveying large numbers of markers within a population, such as those involving genetic mapping, breeding, and population genomics. We have modified the GBS technology in a number of ways. Custom, enzyme specific adaptors have been replaced with standard Illumina adaptors compatible with blunt-end restriction enzymes. Multiplexing is achieved through a dual barcoding system, and bead-based library preparation protocols allows for in-solution size selection and eliminates the need for columns and gels. Results: A panel of eight restriction enzymes was selected for testing on B73 maize and Nipponbare rice genomic DNA. Quality of the data was demonstrated by identifying that the vast majority of reads from each enzyme aligned to restriction sites predicted in silico. The link between enzyme parameters and experimental outcome was demonstrated by showing that the sequenced portion of the genome was adaptable by selecting enzymes based on motif length, complexity, and methylation sensitivity. The utility of the new GBS protocol was demonstrated by correctly mapping several in a maize F-2 population resulting from a B73 x Country Gentleman test cross. Conclusions: This technology is readily adaptable to different genomes, highly amenable to multiplexing and compatible with over forty commercially available restriction enzymes. These advancements represent a major improvement in genotyping technology by providing a highly flexible and scalable GBS that is readily implemented for studies on genome-wide variation.
引用
收藏
页数:23
相关论文
共 61 条
  • [1] A map of human genome variation from population-scale sequencing
    Altshuler, David
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Collins, Francis S.
    De la Vega, Francisco M.
    Donnelly, Peter
    Egholm, Michael
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Knoppers, Bartha M.
    Lander, Eric S.
    Lehrach, Hans
    Mardis, Elaine R.
    McVean, Gil A.
    Nickerson, DebbieA.
    Peltonen, Leena
    Schafer, Alan J.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Deiros, David
    Metzker, Mike
    Muzny, Donna
    Reid, Jeff
    Wheeler, David
    Wang, Jun
    Li, Jingxiang
    Jian, Min
    Li, Guoqing
    Li, Ruiqiang
    Liang, Huiqing
    Tian, Geng
    Wang, Bo
    Wang, Jian
    Wang, Wei
    Yang, Huanming
    Zhang, Xiuqing
    Zheng, Huisong
    Lander, Eric S.
    Altshuler, David L.
    Ambrogio, Lauren
    Bloom, Toby
    Cibulskis, Kristian
    Fennell, Tim J.
    Gabriel, Stacey B.
    [J]. NATURE, 2010, 467 (7319) : 1061 - 1073
  • [2] An integrated map of genetic variation from 1,092 human genomes
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Schmidt, Jeanette P.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Dinh, Huyen
    Kovar, Christie
    Lee, Sandra
    Lewis, Lora
    Muzny, Donna
    Reid, Jeff
    Wang, Min
    Wang, Jun
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Li, Zhuo
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Su, Zhe
    Tai, Shuaishuai
    Tang, Meifang
    [J]. NATURE, 2012, 491 (7422) : 56 - 65
  • [3] Multiplexed shotgun genotyping for rapid and efficient genetic mapping
    Andolfatto, Peter
    Davison, Dan
    Erezyilmaz, Deniz
    Hu, Tina T.
    Mast, Joshua
    Sunayama-Morita, Tomoko
    Stern, David L.
    [J]. GENOME RESEARCH, 2011, 21 (04) : 610 - 617
  • [4] Exome sequencing as a tool for Mendelian disease gene discovery
    Bamshad, Michael J.
    Ng, Sarah B.
    Bigham, Abigail W.
    Tabor, Holly K.
    Emond, Mary J.
    Nickerson, Deborah A.
    Shendure, Jay
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (11) : 745 - 755
  • [5] Marker Density and Read Depth for Genotyping Populations Using Genotyping-by-Sequencing
    Beissinger, Timothy M.
    Hirsch, Candice N.
    Sekhon, Rajandeep S.
    Foerster, Jillian M.
    Johnson, James M.
    Muttoni, German
    Vaillancourt, Brieanne
    Buell, C. Robin
    Kaeppler, Shawn M.
    de Leon, Natalia
    [J]. GENETICS, 2013, 193 (04) : 1073 - 1081
  • [6] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [7] Chen J., 1994, The Maize Handbook, P526
  • [8] Maize HapMap2 identifies extant variation from a genome in flux
    Chia, Jer-Ming
    Song, Chi
    Bradbury, Peter J.
    Costich, Denise
    de Leon, Natalia
    Doebley, John
    Elshire, Robert J.
    Gaut, Brandon
    Geller, Laura
    Glaubitz, Jeffrey C.
    Gore, Michael
    Guill, Kate E.
    Holland, Jim
    Hufford, Matthew B.
    Lai, Jinsheng
    Li, Meng
    Liu, Xin
    Lu, Yanli
    McCombie, Richard
    Nelson, Rebecca
    Poland, Jesse
    Prasanna, Boddupalli M.
    Pyhaejaervi, Tanja
    Rong, Tingzhao
    Sekhon, Rajandeep S.
    Sun, Qi
    Tenaillon, Maud I.
    Tian, Feng
    Wang, Jun
    Xu, Xun
    Zhang, Zhiwu
    Kaeppler, Shawn M.
    Ross-Ibarra, Jeffrey
    McMullen, Michael D.
    Buckler, Edward S.
    Zhang, Gengyun
    Xu, Yunbi
    Ware, Doreen
    [J]. NATURE GENETICS, 2012, 44 (07) : 803 - U238
  • [9] Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing
    Crossa, Jose
    Beyene, Yoseph
    Kassa, Semagn
    Perez, Paulino
    Hickey, John M.
    Chen, Charles
    de los Campos, Gustavo
    Burgueno, Juan
    Windhausen, Vanessa S.
    Buckler, Ed
    Jannink, Jean-Luc
    Lopez Cruz, Marco A.
    Babu, Raman
    [J]. G3-GENES GENOMES GENETICS, 2013, 3 (11): : 1903 - 1926
  • [10] A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species
    Elshire, Robert J.
    Glaubitz, Jeffrey C.
    Sun, Qi
    Poland, Jesse A.
    Kawamoto, Ken
    Buckler, Edward S.
    Mitchell, Sharon E.
    [J]. PLOS ONE, 2011, 6 (05):