GORENSTEIN COTILTING AND TILTING MODULES

被引:12
作者
Yan, Liang [1 ]
Li, Weiqing [1 ]
Ouyang, Baiyu [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha, Hunan, Peoples R China
关键词
m-Gorenstein; cotilting; modules; REPRESENTATION-THEORY; RELATIVE HOMOLOGY;
D O I
10.1080/00927872.2014.981752
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Auslander and Solberg introduced the concepts of finitely generated cotilting and tilting modules in relative homological algebra considering subfunctors of the Ext-functor. In this article we generalize Auslander-Solberg relative notions by giving the definitions of infinitely generated Gorenstein cotilting and tilting modules by means of Gorenstein exact sequences. Using the theory developed by Enochs on the existence of Gorenstein preenvelopes and precovers, we prove a characterization of relative Gorenstein cotilting and tilting modules, which is a generalization of the beautiful characterization of relative cotilting and tilting modules given by Bazzoni.
引用
收藏
页码:591 / 603
页数:13
相关论文
共 11 条
[1]  
Angeleri Hugel LA, 2001, FORUM MATH, V13, P239
[2]   RELATIVE HOMOLOGY AND REPRESENTATION-THEORY .1. RELATIVE HOMOLOGY AND HOMOLOGICALLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
SOLBERG, O .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :2995-3031
[3]   RELATIVE HOMOLOGY AND REPRESENTATION-THEORY .2. RELATIVE COTILTING THEORY [J].
AUSLANDER, M ;
SOLBERG, O .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :3033-3079
[4]   RELATIVE HOMOLOGY AND REPRESENTATION-THEORY .3. COTILTING MODULES AND WEDDERBURN CORRESPONDENCE [J].
AUSLANDER, M ;
SOLBERG, O .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :3081-3097
[5]   A characterization of n-cotilting and n-tilting modules [J].
Bazzoni, S .
JOURNAL OF ALGEBRA, 2004, 273 (01) :359-372
[6]  
Brenner S., 1980, Proc. ICRA II (Ottawa, P103
[7]   TILTING MODULES AND TILTING TORSION [J].
COLPI, R ;
TRLIFAJ, J .
JOURNAL OF ALGEBRA, 1995, 178 (02) :614-634
[8]  
Enochs E.E., 2011, RELATIVE HOMOLOGICAL
[9]   Gorenstein homological dimensions [J].
Holm, H .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) :167-193
[10]  
Ringel C., 1976, T AM MATH SOC, V215, P81, DOI 10.1090/S0002-9947-1976-0507068-3