Robust Traffic-Sign Detection and Classification Using Mobile LiDAR Data With Digital Images

被引:65
作者
Guan, Haiyan [1 ]
Yan, Wanqian [1 ]
Yu, Yongtao [2 ]
Zhong, Liang [3 ]
Li, Dilong [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Geog & Remote Sensing, Nanjing 210044, Jiangsu, Peoples R China
[2] Huaiyin Inst Technol, Fac Comp & Software Engn, Huaian 223003, Peoples R China
[3] Changjiang Spatial Informat Technol Engn Co Ltd, Wuhan 410010, Hubei, Peoples R China
[4] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital images; deep learning; geometrical features; intensity; mobile LiDAR point clouds; traffic signs; LASER-SCANNING DATA; HIERARCHICAL-DEEP MODELS; BOLTZMANN MACHINES; OBJECT DETECTION; POINT-CLOUDS; RECOGNITION; INVENTORY;
D O I
10.1109/JSTARS.2018.2810143
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study aims at building a robust method for detecting and classifying traffic signs from mobile LiDAR point clouds and digital images. First, this method detects traffic signs from mobile LiDAR point clouds with regard to a prior knowledge of road width, pole height, reflectance, geometrical structure, and traffic-sign size. Then, traffic-sign images are segmented by projecting the detected traffic-sign points onto the digital images. Afterward, the segmented traffic-sign images are normalized for automatic classification with a given image size. Finally, a traffic-sign classifier is proposed based on a supervised Gaussian-Bernoulli deep Boltzmann machine model. We evaluated the proposed method using datasets acquired by a RIEGL VMX-450 system. The traffic-sign detection accuracy of 86.8% was achieved; through parameter sensitivity analysis, the overall performance of traffic-sign classification achieved a recognition rate of 93.3%. The computational performance showed that our method provides a promising solution to traffic-sign detection and classification using mobile LiDAR point clouds and digital images.
引用
收藏
页码:1715 / 1724
页数:10
相关论文
共 37 条
[1]  
AI C, 2015, J TRANSP ENG, V141, P1
[2]  
Vu A, 2013, IEEE INT C INTELL TR, P875, DOI 10.1109/ITSC.2013.6728342
[3]  
[Anonymous], 2014, ISPRS ANN PHOTOGRAMM, DOI DOI 10.5194/ISPRSANNALS-II-5-1-2014
[4]  
[Anonymous], [No title captured]
[5]  
Beraldin J.-Angelo., 2010, Airborne and Terrestrial Laser Scanning, P1
[6]   Assessment of stereo camera calibration techniques for a portable mobile mapping system [J].
Brogan, Michael ;
McLoughlin, Simon ;
Deegan, Catherine .
IET COMPUTER VISION, 2013, 7 (03) :209-217
[7]  
Chen Xin., 2009, P 17 ACM SIGSPATIAL, P488
[8]  
Chen YZ, 2007, PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P1729
[9]  
Demantké J, 2011, INT ARCH PHOTOGRAMM, V38-5, P97
[10]   Eigen-based traffic sign recognition [J].
Fleyeh, H. ;
Davami, E. .
IET INTELLIGENT TRANSPORT SYSTEMS, 2011, 5 (03) :190-196