Stanley depth of multigraded modules

被引:32
作者
Popescu, Dorin [1 ]
机构
[1] Univ Bucharest, Inst Math Simion Stoilow, Bucharest 014700, Romania
关键词
Monomial ideals; Prime filtrations; Pretty clean filtrations; Stanley ideals; MONOMIAL IDEALS; FILTRATIONS; DECOMPOSITIONS; CONJECTURE; DIMENSION;
D O I
10.1016/j.jalgebra.2009.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Stanley's Conjecture on Cohen-Macaulay multigraded modules is studied especially in dimension 2. In codimension 2 similar results were obtained by Herzog, Soleyman-Jahan and Yassemi. As a consequence of our results Stanley's Conjecture holds in 5 variables. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2782 / 2797
页数:16
相关论文
共 19 条
[1]  
Ahmad S, 2007, B MATH SOC SCI MATH, V50, P99
[2]  
[Anonymous], THESIS
[3]  
ANWAR I, 2008, B MATH SOC SCI MATH, V51
[4]   Stanley conjecture in small embedding dimension [J].
Anwar, Imran ;
Popescu, Dorin .
JOURNAL OF ALGEBRA, 2007, 318 (02) :1027-1031
[5]   On a conjecture of R. P. Stanley; part I - Monomial ideals [J].
Apel, J .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 17 (01) :39-56
[6]  
Bruns W., 1996, Cohen-Macaulay Rings
[7]  
Dress A., 1993, Beitr. Alg. Geom, V34, P45
[8]   On the radical of a monomial ideal [J].
Herzog, J ;
Takayama, Y ;
Terai, N .
ARCHIV DER MATHEMATIK, 2005, 85 (05) :397-408
[9]  
HERZOG J, 2009, J ALGEBRA IN PRESS
[10]   Stanley decompositions and partitionable simplicial complexes [J].
Herzog, Juergen ;
Jahan, Ali Soleyman ;
Yassemi, Siamak .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 27 (01) :113-125