Gauging non-Hermitian Hamiltonians

被引:13
作者
Jones, H. F. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
关键词
SYMMETRY;
D O I
10.1088/1751-8113/42/13/135303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the problem of coupling non-Hermitian systems, treated as fundamental rather than effective theories, to the electromagnetic field. In such theories the observables are not the x and p appearing in the Hamiltonian, but quantities X and P constructed by means of the metric operator. Following the analogous procedure of gauging a global symmetry in Hermitian quantum mechanics we find that the corresponding gauge transformation in X implies minimal substitution in the form P -> P - eA(X). We discuss how the relevant matrix elements governing electromagnetic transitions may be calculated in the special case of the Swanson Hamiltonian, where the equivalent Hermitian Hamiltonian h is local, and in the more generic example of the imaginary cubic interaction, where H is local but h is not.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Non-Hermitian Hamiltonians of Lie algebraic type [J].
Assis, Paulo E. G. ;
Fring, Andreas .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
[2]   The quantum brachistochrone problem for non-Hermitian Hamiltonians [J].
Assis, Paulo E. G. ;
Fring, Andreas .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
[3]   Faster than hermitian quantum mechanics [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Jones, Hugh F. ;
Meister, Bernhard K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[4]   PT-symmetric versus Hermitian formulations of quantum mechanics [J].
Bender, CM ;
Chen, JH ;
Milton, KA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (07) :1657-1668
[5]   Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction -: art. no. 025001 [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW D, 2004, 70 (02) :025001-1
[6]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[7]   Complex extension of quantum mechanics (vol 89, art no 270401, 2002) [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2004, 92 (11)
[8]   Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics [J].
Bender, CM ;
Meisinger, PN ;
Wang, QH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :1973-1983
[9]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[10]  
BENDER CM, 2008, ARXIV08043487