Functional support vector machines and generalized linear models for glacier geomorphology analysis

被引:13
|
作者
Matias, J. M. [1 ]
Ordonez, C. [2 ]
Taboada, J. [2 ]
Rivas, T. [2 ]
机构
[1] Univ Vigo, Dept Stat, Vigo 36310, Spain
[2] Univ Vigo, Dept Nat Resources, Vigo 36310, Spain
关键词
digital elevation models; functional data analysis; functional general lineal model; support vector machines; topographic profiles;
D O I
10.1080/00207160801965305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a functional pattern recognition approach to the problem of identifying the topographic profiles of glacial and fluvial valleys, using a functional version of support vector machines (SVMs) for classification. We compare a proposed functional version of SVMs with functional generalized linear models and their vectorial versions: generalized linear models and SVMs that use the original observations as input. The results indicate the benefit of our proposed functional SVMs and, in more general terms, the advantages of using a functional rather than a vectorial approach.
引用
收藏
页码:275 / 285
页数:11
相关论文
共 50 条
  • [1] Generalized Twin Support Vector Machines
    H. Moosaei
    S. Ketabchi
    M. Razzaghi
    M. Tanveer
    Neural Processing Letters, 2021, 53 : 1545 - 1564
  • [2] Generalized Twin Support Vector Machines
    Moosaei, H.
    Ketabchi, S.
    Razzaghi, M.
    Tanveer, M.
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1545 - 1564
  • [3] Linear spectral mixture models and support vector machines for remote sensing
    Brown, M
    Lewis, HG
    Gunn, SR
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (05): : 2346 - 2360
  • [4] Normalization of Linear Support Vector Machines
    Feng, Yiyong
    Palomar, Daniel P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (17) : 4673 - 4688
  • [5] Linear programming support vector machines
    Zhou, WD
    Zhang, L
    Jiao, LC
    PATTERN RECOGNITION, 2002, 35 (12) : 2927 - 2936
  • [6] Random Projections for Linear Support Vector Machines
    Paul, Saurabh
    Boutsidis, Christos
    Magdon-Ismail, Malik
    Drineas, Petros
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2014, 8 (04)
  • [7] Interpretable support vector machines for functional data
    Martin-Barragan, Belen
    Lillo, Rosa
    Romo, Juan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 232 (01) : 146 - 155
  • [8] Support vector machines framework for linear signal processing
    Rojo-Alvarez, JL
    Camps-Valls, G
    Martínez-Ramón, M
    Soria-Olivas, E
    Navia-Vázquez, A
    Figueiras-Vidal, AR
    SIGNAL PROCESSING, 2005, 85 (12) : 2316 - 2326
  • [9] Representing functional data using support vector machines
    Munoz, Alberto
    Gonzalez, Javier
    PATTERN RECOGNITION LETTERS, 2010, 31 (06) : 511 - 516
  • [10] Representing Functional Data Using Support Vector Machines
    Gonzalez, Javier
    Munoz, Alberto
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2008, 5197 : 332 - 339