Subharmonic solutions and homoclinic orbits of second order discrete Hamiltonian systems with potential changing sign

被引:14
作者
Deng, Xiaoqing [1 ]
Cheng, Gong [2 ]
Shi, Haiping [3 ]
机构
[1] Hunan Univ Commerce, Coll Informat, Changsha 410205, Hunan, Peoples R China
[2] Cent S Univ, Sch Geosci & Environm Engn, Changsha 410083, Hunan, Peoples R China
[3] Guangdong Baiyun Inst, Basic Courses Dept, Guangzhou 510450, Guangdong, Peoples R China
关键词
Periodic solutions; Subharmonic solutions; Homoclinic orbits; Second order discrete Hamiltonian systems; Critical point theory; BOUNDARY-VALUE-PROBLEMS; PERIODIC-SOLUTIONS; EXISTENCE;
D O I
10.1016/j.camwa.2009.06.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of second order discrete Hamiltonian systems with periodicity assumptions is considered. Based on the critical point theory, some sufficient conditions for the existence of subharmonic solutions and homoclinic orbits are obtained. The results obtained extend the results in 2007 by relaxing the assumptions on the sign of the potential. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1198 / 1206
页数:9
相关论文
共 24 条
[1]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[2]  
[Anonymous], 1994, COMM APPL NONLINEAR
[3]   Nontrivial periodic solutions for asymptotically linear resonant difference problem [J].
Bin, Hong-Hua ;
Yu, Han-She ;
Guo, Zhi-Ming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) :477-488
[4]   Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign [J].
Deng, Xiaoqing ;
Cheng, Gong .
ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (03) :301-314
[5]  
Ding Y., 1993, DYNAM SYST APPL, V2, P131
[6]  
Fei GH, 1996, CHINESE ANN MATH B, V17, P403
[7]   The existence of periodic and subharmonic solutions of subquadratic second order difference equations [J].
Guo, ZM ;
Yu, JS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :419-430
[8]  
Guo ZM, 2003, SCI CHINA SER A, V46, P506
[9]   Existence and multiple solutions for a second-order difference boundary value problem via critical point theory [J].
Liang, Haihua ;
Weng, Peixuan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :511-520
[10]   Homoclinic orbits and subharmonics for nonlinear second order difference equations [J].
ma, Manjun ;
Guo, Zhiming .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) :1737-1745