A continuation method for solving fixed points of self-mappings in general nonconvex sets

被引:12
作者
Lin, ZH [1 ]
Yu, B
Zhu, DL
机构
[1] Jilin Univ, Dept Math, Changchun 130023, Peoples R China
[2] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
fixed point; self-mapping; nonconvex set; homotopy method;
D O I
10.1016/S0362-546X(02)00140-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a homotopy continuation method for solving fixed points of self-mappings in a class of general nonconvex subsets in R-n. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:905 / 915
页数:11
相关论文
共 6 条
[1]  
Allgower E., 1990, NUMERICAL CONTINUATI
[2]  
CHOW SN, 1978, MATH COMPUT, V32, P887, DOI 10.1090/S0025-5718-1978-0492046-9
[3]   Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem [J].
Feng, GC ;
Lin, ZH ;
Yu, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (06) :761-768
[4]   CONSTRUCTIVE PROOF OF BROUWER FIXED-POINT THEOREM AND COMPUTATIONAL RESULTS [J].
KELLOGG, RB ;
LI, TY ;
YORKE, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :473-483
[5]   A combined homotopy interior point method for convex nonlinear programming [J].
Lin, ZH ;
Yu, B ;
Feng, GC .
APPLIED MATHEMATICS AND COMPUTATION, 1997, 84 (2-3) :193-211
[6]   Homotopy method for a class of nonconvex Brouwer fixed-point problems [J].
Yu, B ;
Lin, ZH .
APPLIED MATHEMATICS AND COMPUTATION, 1996, 74 (01) :65-77