Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nedelec elements

被引:39
作者
Castillo-Reyes, Octavio [1 ]
de la Puente, Josep [1 ]
Emilio Garcia-Castillo, Luis [2 ]
Maria Cela, Jose [1 ]
机构
[1] BSC, Barcelona 08034, Spain
[2] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid 28903, Spain
关键词
Controlled source electromagnetics (CSEM); Numerical modelling; Numerical solutions; FINITE-ELEMENT; CSEM DATA; INVERSION; VOLUME; FEASIBILITY; GERMANY; AREA; MPI;
D O I
10.1093/gji/ggz285
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a parallel and high-order Nedelec finite element solution for the marine controlled-source electromagnetic (CSEM) forward problem in 3-D media with isotropic conductivity. Our parallel Python code is implemented on unstructured tetrahedral meshes, which support multiple-scale structures and bathymetry for general marine 3-D CSEM modelling applications. Based on a primary/secondary field approach, we solve the diffusive form of Maxwell's equations in the low-frequency domain. We investigate the accuracy and performance advantages of our new high-order algorithm against a low-order implementation proposed in our previous work. The numerical precision of our high-order method has been successfully verified by comparisons against previously published results that are relevant in terms of scale and geological properties. A convergence study confirms that high-order polynomials offer a better trade-off between accuracy and computation time. However, the optimum choice of the polynomial order depends on both the input model and the required accuracy as revealed by our tests. Also, we extend our adaptive-meshing strategy to high-order tetrahedral elements. Using adapted meshes to both physical parameters and high-order schemes, we are able to achieve a significant reduction in computational cost without sacrificing accuracy in the modelling. Furthermore, we demonstrate the excellent performance and quasi-linear scaling of our implementation in a state-of-the-art high-performance computing architecture.
引用
收藏
页码:39 / 65
页数:27
相关论文
共 66 条
[1]   Three-dimensional wideband electromagnetic modeling on massively parallel computers [J].
Alumbaugh, DL ;
Newman, GA ;
Prevost, L ;
Shadid, JN .
RADIO SCIENCE, 1996, 31 (01) :1-23
[2]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[3]   3D finite-element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids [J].
Ansari, Seyedmasoud ;
Farquharson, Colin G. .
GEOPHYSICS, 2014, 79 (04) :E149-E165
[4]   An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data [J].
Auken, Esben ;
Christiansen, Anders Vest ;
Kirkegaard, Casper ;
Fiandaca, Gianluca ;
Schamper, Cyril ;
Behroozmand, Ahmad Ali ;
Binley, Andrew ;
Nielsen, Emil ;
Efferso, Flemming ;
Christensen, Niels Boie ;
Sorensen, Kurt ;
Foged, Nikolaj ;
Vignoli, Giulio .
EXPLORATION GEOPHYSICS, 2015, 46 (03) :223-235
[5]   Three-dimensional electromagnetic modelling and inversion from theory to application [J].
Avdeev, DB .
SURVEYS IN GEOPHYSICS, 2005, 26 (06) :767-799
[6]  
Axelsson O., 1996, ITERATIVE SOLUTION M
[7]   Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials [J].
Badea, EA ;
Everett, ME ;
Newman, GA ;
Biro, O .
GEOPHYSICS, 2001, 66 (03) :786-799
[8]   Feasibility of simplified integral equation modeling of low-frequency marine CSEM with a resistive target [J].
Bakr, Shaaban A. ;
Mannseth, Trond .
GEOPHYSICS, 2009, 74 (05) :F107-F117
[9]  
Balay S., 2016, PORTABLE EXTENSIBLE
[10]   Numerical Modelling in Geo-Electromagnetics: Advances and Challenges [J].
Boerner, Ralph-Uwe .
SURVEYS IN GEOPHYSICS, 2010, 31 (02) :225-245