Non-local non-linear sigma models

被引:11
|
作者
Gubser, Steven S. [1 ]
Jepsen, Christian B. [1 ]
Ji, Ziming [1 ]
Trundy, Brian [1 ]
Yarom, Amos [1 ,2 ]
机构
[1] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[2] Technion, Dept Phys, IL-32000 Haifa, Israel
基金
美国国家科学基金会;
关键词
Renormalization Group; Sigma Models; M-Theory; RANGE;
D O I
10.1007/JHEP09(2019)005
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study non-local non-linear sigma models in arbitrary dimension, focusing on the scale invariant limit in which the scalar fields naturally have scaling dimension zero, so that the free propagator is logarithmic. The classical action is a bi-local integral of the square of the arc length between points on the target manifold. One-loop divergences can be canceled by introducing an additional bi-local term in the action, proportional to the target space laplacian of the square of the arc length. The metric renormalization that one encounters in the two-derivative non-linear sigma model is absent in the non-local case. In our analysis, the target space manifold is assumed to be smooth and Archimedean; however, the base space may be either Archimedean or ultrametric. We comment on the relation to higher derivative non-linear sigma models and speculate on a possible application to the dynamics of M2-branes.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Non-local non-linear sigma models
    Steven S. Gubser
    Christian B. Jepsen
    Ziming Ji
    Brian Trundy
    Amos Yarom
    Journal of High Energy Physics, 2019
  • [2] Twisting gauged non-linear sigma-models
    Baptista, J. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02):
  • [3] Dimensional crossover in the non-linear sigma model
    O'Connor, D
    Stephens, CR
    Santiago, JA
    REVISTA MEXICANA DE FISICA, 2002, 48 (04) : 300 - 306
  • [4] Amplitude relations in non-linear sigma model
    Gang Chen
    Yi-Jian Du
    Journal of High Energy Physics, 2014
  • [5] Amplitude relations in non-linear sigma model
    Chen, Gang
    Du, Yi-Jian
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [6] On the Marginal Deformations of General (0,2) Non-Linear Sigma-Models
    Adam, Ido
    STRING-MATH 2012, 2015, 90 : 171 - 179
  • [7] Hamiltonian analysis of non-linear sigma model on supercoset target
    Kluson, Josef
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (10):
  • [8] Penrose limits and non-local theories
    Hubeny, VE
    Rangamani, M
    Verlinde, E
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (10):
  • [9] Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models
    Adebayo, O. E.
    Urcun, S.
    Rolin, G.
    Bordas, S. P. A.
    Trucu, D.
    Eftimie, R.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 17446 - 17498
  • [10] Renormalization group analysis of the quantum non-linear sigma model with a damping term
    Gamba, A
    Grilli, M
    Castellani, C
    NUCLEAR PHYSICS B, 1999, 556 (03) : 463 - 484