On the kth Laplacian eigenvalues of trees with perfect matchings

被引:6
|
作者
Li, Jianxi [1 ]
Shiu, Wai Chee [1 ]
Chang, An [2 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Fuzhou Univ, Software Coll, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Tree; Laplacian eigenvalue; Perfect matchings; Bound;
D O I
10.1016/j.laa.2009.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-n(+) be the set of all trees of order n with perfect matchings. In this paper, we prove that for any tree T is an element of T-n(+), its kth largest Laplacian eigenvalue mu(k)(T) satisfies mu(k)(T) = 2 when n = 2k, and mu(k)(T) <= [n/2k]+2+ root([n/2k](2)+4/2 when n not equal 2k. Moreover, this upper bound is sharp when n = 0(mod 2k). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1036 / 1041
页数:6
相关论文
共 50 条
  • [1] Note on the kth Laplacian eigenvalues of trees with perfect matchings
    Yuan, Xi-Ying
    Guo, Ji-Ming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 483 : 115 - 127
  • [2] On the kth eigenvalues of trees with perfect matchings
    Chang, An
    Shiu, Wai Chee
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2007, 9 (01): : 321 - 331
  • [3] On the largest eigenvalues of trees with perfect matchings
    Lin, Wenshui
    Guo, Xiaofeng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 42 (04) : 1057 - 1067
  • [4] On the largest eigenvalues of trees with perfect matchings
    Wenshui Lin
    Xiaofeng Guo
    Journal of Mathematical Chemistry, 2007, 42 : 1057 - 1067
  • [5] On the Laplacian Energy of Trees with Perfect Matchings
    Chang, An
    Deng, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (03) : 767 - 776
  • [6] On the Laplacian spectral radii of trees with perfect matchings
    Yuan, Xi-Ying
    Shao, Jia-Yu
    He, Chang-Xiang
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (01) : 65 - 85
  • [7] On the Laplacian spectral radii of trees with perfect matchings
    Xi-Ying Yuan
    Jia-Yu Shao
    Chang-Xiang He
    Journal of Mathematical Chemistry, 2009, 46 : 65 - 85
  • [8] BOUNDS FOR THE SMALLEST POSITIVE EIGENVALUES OF TREES WITH PERFECT MATCHINGS
    邵嘉裕
    洪渊
    Chinese Science Bulletin, 1992, (09) : 713 - 717
  • [9] On the Laplacian spectral radii of trees with nearly perfect matchings
    Li Zhang
    Jiayu Shao
    Journal of Systems Science and Complexity, 2009, 22 : 533 - 540
  • [10] ON THE LAPLACIAN SPECTRAL RADII OF TREES WITH NEARLY PERFECT MATCHINGS
    Zhang, Li
    Shao, Jiayu
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2009, 22 (03) : 533 - 540