Tetrahedral satellite formation: Geomagnetic measurements exchange and interpolation

被引:5
作者
Afanasev, Anton [1 ]
Shavin, Mikhail [1 ]
Ivanov, Anton [1 ]
Pritykin, Dmitry [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Space Ctr, Moscow, Russia
关键词
Formation flying; Multipoint measurements; Geomagnetic field; Interpolation; Attitude determination; RECONFIGURATION; SPACECRAFT; MISSION; DESIGN;
D O I
10.1016/j.asr.2021.02.012
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This note presents a study of a four-satellite tetrahedral formation to collect, process, and exchange multipoint measurements of geo-magnetic field in a near-polar orbit. The study is conducted as a series of numerical experiments based on simulated spacecraft orbits and corresponding geomagnetic field models output. The four satellites are assumed to move in near-circular orbits specifically chosen to maintain the tetrahedron quality. The satellites exchange their simulated magnetometers readings and the collected multipoint measure-ments are processed on board of any of them thus creating an instantaneous interpolated map of the geomagnetic field in the interior of the tetrahedron. Interpolation is carried out with the use of Kriging algorithms, known in geostatistics for capturing spatial correlation of the data and taking into account statistical properties of the interpolated variables. We propose a concept of a servicing formation, and analyze interpolation accuracy for different formation sizes. It is then discussed how the processed multipoint measurements can be pro-vided as a service to other nearby satellites. Finally, we show that using the existing COTS magnetometers it is possible to obtain real-time interpolation data, which are more precise at a given point and time than a conventional onboard magnetic field model, thus ensur-ing better attitude determination routines performance in the serviced spacecraft. (C) 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3294 / 3307
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 2014, J. Guid., Control, Dyn.
[2]  
Armitage S., 2015, CANX4 CANX5 PRECISIO
[3]   Approaches to Studying the Multiscale Ionospheric Structure using Nanosatellites [J].
Chernyshov, A. A. ;
Chugunin, D. V. ;
Mogilevsky, M. M. ;
Moiseenko, I. L. ;
Ilyasov, A. A. ;
Vovchenko, V. V. ;
Pulinets, S. A. ;
Klimenko, M. V. ;
Zakharenkova, I. E. ;
Kostrov, A. V. ;
Gushchin, M. E. ;
Korobkov, S. V. .
GEOMAGNETISM AND AERONOMY, 2016, 56 (01) :72-79
[4]   Studies of the ionosphere using radiophysical methods on ultra-small spacecrafts [J].
Chernyshova, A. A. ;
Chugunin, D. V. ;
Mogilevsky, M. M. ;
Petrukovich, A. A. .
ACTA ASTRONAUTICA, 2020, 167 :455-459
[5]   TERMINAL GUIDANCE SYSTEM FOR SATELLITE RENDEZVOUS [J].
CLOHESSY, WH ;
WILTSHIRE, RS .
JOURNAL OF THE AEROSPACE SCIENCES, 1960, 27 (09) :653-&
[6]  
Daly P.W, 1994, MPAEW1009427
[7]   Spacecraft formation flying reconfiguration with extended and impulsive maneuvers [J].
Di Mauro, G. ;
Spiller, D. ;
Bevilacqua, R. ;
D'Amico, S. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (06) :3474-3507
[8]   Design, Development, Implementation, and On-orbit Performance of the Dynamic Ionosphere CubeSat Experiment Mission [J].
Fish, C. S. ;
Swenson, C. M. ;
Crowley, G. ;
Barjatya, A. ;
Neilsen, T. ;
Gunther, J. ;
Azeem, I. ;
Pilinski, M. ;
Wilder, R. ;
Allen, D. ;
Anderson, M. ;
Bingham, B. ;
Bradford, K. ;
Burr, S. ;
Burt, R. ;
Byers, B. ;
Cook, J. ;
Davis, K. ;
Frazier, C. ;
Grover, S. ;
Hansen, G. ;
Jensen, S. ;
LeBaron, R. ;
Martineau, J. ;
Miller, J. ;
Nelsen, J. ;
Nelson, W. ;
Patterson, P. ;
Stromberg, E. ;
Tran, J. ;
Wassom, S. ;
Weston, C. ;
Whiteley, M. ;
Young, Q. ;
Petersen, J. ;
Schaire, S. ;
Davis, C. R. ;
Bokaie, M. ;
Fullmer, R. ;
Baktur, R. ;
Sojka, J. ;
Cousins, M. .
SPACE SCIENCE REVIEWS, 2014, 181 (1-4) :61-120
[9]   Swarm:: A constellation to study the Earth's magnetic field [J].
Friis-Christensen, E ;
Lühr, H ;
Hulot, G .
EARTH PLANETS AND SPACE, 2006, 58 (04) :351-358
[10]  
Grasso M., 2020, ADV SPACE RES