Structural aspects of twin and pure twin groups

被引:19
作者
Bardakov, Valeriy [1 ,2 ,3 ]
Singh, Mahender [4 ]
Vesnin, Andrei [1 ,5 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] Agr Univ, Novosibirsk, Russia
[4] Indian Inst Sci Educ & Res IISER Mohali, Dept Math Sci, Sect 81,PO Manauli, Sas Nagar 140306, Punjab, India
[5] Tomsk State Univ, Tomsk 634050, Russia
基金
俄罗斯科学基金会;
关键词
Coxeter group; Doodle; Eilenberg-Maclane space; Free group; Hyperbolic plane; Pure twin group; Twin group;
D O I
10.1007/s10711-019-00429-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The twin group T-n is a Coxeter group generated by n-1 involutions and the pure twin group PTn is the kernel of the natural surjection of T-n onto the symmetric group on n letters. In this paper, we investigate structural aspects of twin and pure twin groups. We prove that the twin group T-n decomposes into a free product with amalgamation for n > 4. It is shown that the pure twin group PTn is free for n = 3, 4, and not free for n >= 6. We determine a generating set for PTn, and give an upper bound for its rank. We also construct a natural faithful representation of T-4 into Aut(F-7). In the end, we propose virtual and welded analogues of these groups and some directions for future work.
引用
收藏
页码:135 / 154
页数:20
相关论文
共 13 条
[1]   The discrete fundamental group of the order complex of Bn [J].
Barcelo, Helene ;
Smith, Shelly .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 27 (04) :399-421
[2]   Doodles on surfaces [J].
Bartholomew, Andrew ;
Fennt, Roger ;
Kamada, Naoko ;
Kamada, Seiichi .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (12)
[3]   THE HOMOLOGY OF K-EQUAL MANIFOLDS AND RELATED PARTITION LATTICES [J].
BJORNER, A ;
WELKER, V .
ADVANCES IN MATHEMATICS, 1995, 110 (02) :277-313
[4]  
Dey S., 2018, ARXIV180405375
[5]  
Fenn R., 1979, P TOP LOW DIM MAN 2, V722, P37
[6]  
Gotin K, 2018, ARXIV180705337
[7]  
Harshman N.L., 2018, ARXIV180311000V2
[8]   Embeddings in finitely presented groups which preserve the center [J].
Houcine, Abderezak Ould .
JOURNAL OF ALGEBRA, 2007, 307 (01) :1-23
[9]   Doodle groups [J].
Khovanov, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (06) :2297-2315
[10]  
Khovanov M, 1996, MATH RES LETT, V3, P261