The cuspidal class number formula for certain quotient curves of the modular curve X0(M) by Atkin-Lehner involutions

被引:1
作者
Takagi, Toshikazu [1 ]
机构
[1] Showa Univ, Fac Arts & Sci Fujiyoshida, Fujiyoshida, Yamanashi 4030005, Japan
关键词
modular curve; modular unit; cuspidal class number;
D O I
10.2969/jmsj/06210013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the cuspidal class number of a certain quotient curve of the modular curve X-0(M) with M square-free. For each factor r of M, let w(r) denote the Atkin-Lehner type involution of X-0(M). Let M-0 be a, divisor of M, and W-0 the subgroup of the automorphism group of X-0(M) consisting of all w(r) with r dividing M-0. Our object is the quotient X-0(M) by W-0. In this paper, we consider the case where M is odd.
引用
收藏
页码:13 / 47
页数:35
相关论文
共 14 条
[1]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[2]  
Drinfeld V. G., 1973, Funkcional. Anal. i Prilozen, V7, P155
[3]  
KLIMEK S, 1975, THESIS BERKELEY
[4]  
Kubert Daniel S., 1981, Fundamental Principles of Mathematical Sciences, V244
[5]   INDEX OF STICKELBERGER IDEALS OF ORDER-2 AND CUSPIDAL CLASS NUMBERS [J].
KUBERT, DS ;
LANG, S .
MATHEMATISCHE ANNALEN, 1978, 237 (03) :213-232
[6]  
Manin Y., 1972, IZV AKAD NAUK SSSR M, V36, P19
[7]  
OGG A, 1972, AMS C ST LOUIS, P211
[8]  
OGG AP, 1974, B SOC MATH FR, V102, P449
[9]   CUSPIDAL CLASS NUMBER FORMULA FOR THE MODULAR-CURVES X(1)(P) [J].
TAKAGI, T .
JOURNAL OF ALGEBRA, 1992, 151 (02) :348-374
[10]   THE CUSPIDAL CLASS NUMBER FORMULA FOR THE MODULAR-CURVES X(1)(3(M)) [J].
TAKAGI, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1995, 47 (04) :671-686