Natural-orbital impurity solver and projection approach for Green's functions

被引:22
作者
Lu, Y. [1 ]
Cao, X. [2 ]
Hansmann, P. [2 ,3 ]
Haverkort, M. W. [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 19, D-69120 Heidelberg, Germany
[2] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[3] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
关键词
RENORMALIZATION-GROUP; HUBBARD-MODEL; EXACT DIAGONALIZATION; PHOTOEMISSION; DIMENSIONS; TRANSITION; FERMIONS; LIMIT;
D O I
10.1103/PhysRevB.100.115134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We extend a previously proposed rotation and truncation scheme to optimize quantum Anderson impurity calculations with exact diagonalization [Y. Lu, M. Hoppner, O. Gunnarsson, and M. W. Haverkort, Phys. Rev. B 90, 085102 (2014)] to density-matrix renormalization group (DMRG) calculations. The method reduces the solution of a full impurity problem with virtually unlimited bath sites to that of a small subsystem based on a natural impurity orbital basis set. The later is solved by DMRG in combination with a restricted-active-space truncation scheme. The method allows one to compute Green's functions directly on the real frequency or time axis. We critically test the convergence of the truncation scheme using a one-band Hubbard model solved in the dynamical mean-field theory. The projection is exact in the limit of both infinitely large and small Coulomb interactions. For all parameter ranges, the accuracy of the projected solution converges exponentially to the exact solution with increasing subsystem size.
引用
收藏
页数:9
相关论文
共 63 条
[1]   Long-range interactions in the effective low-energy Hamiltonian of Sr2IrO4: A core-to-core resonant inelastic x-ray scattering study [J].
Agrestini, S. ;
Kuo, C. -Y. ;
Sala, M. Moretti ;
Hu, Z. ;
Kasinathan, D. ;
Ko, K. -T. ;
Glatzel, P. ;
Rossi, M. ;
Cafun, J. -D. ;
Kvashnina, K. O. ;
Matsumoto, A. ;
Takayama, T. ;
Takagi, H. ;
Tjeng, L. H. ;
Haverkort, M. W. .
PHYSICAL REVIEW B, 2017, 95 (20)
[2]   Fork Tensor-Product States: Efficient Multiorbital Real-Time DMFT Solver [J].
Bauernfeind, Daniel ;
Zingl, Manuel ;
Triebl, Robert ;
Aichhorn, Markus ;
Evertz, Hans Gerd .
PHYSICAL REVIEW X, 2017, 7 (03)
[3]   Numerical renormalization group for quantum impurities in a bosonic bath [J].
Bulla, R ;
Lee, HJ ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW B, 2005, 71 (04)
[4]   Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model [J].
Bulla, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (01) :136-139
[5]   Finite-temperature numerical renormalization group study of the Mott transition [J].
Bulla, R ;
Costi, TA ;
Vollhardt, D .
PHYSICAL REVIEW B, 2001, 64 (04)
[6]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[7]   EXACT DIAGONALIZATION APPROACH TO CORRELATED FERMIONS IN INFINITE DIMENSIONS - MOTT TRANSITION AND SUPERCONDUCTIVITY [J].
CAFFAREL, M ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1545-1548
[8]   Solving the dynamical mean-field theory at very low temperatures using the Lanczos exact diagonalization [J].
Capone, Massimo ;
de Medici, Luca ;
Georges, Antoine .
PHYSICAL REVIEW B, 2007, 76 (24)
[9]   Comb tensor networks [J].
Chepiga, Natalia ;
White, Steven R. .
PHYSICAL REVIEW B, 2019, 99 (23)
[10]   Efficient DMFT impurity solver using real-time dynamics with matrix product states [J].
Ganahl, Martin ;
Aichhorn, Markus ;
Evertz, Hans Gerd ;
Thunstroem, Patrik ;
Held, Karsten ;
Verstraete, Frank .
PHYSICAL REVIEW B, 2015, 92 (15)