On the distribution of lattice points on spheres and level surfaces of polynomials

被引:18
作者
Magyar, Akos [1 ]
机构
[1] Univ Georgia, Dept Math, Boyd Grad Ctr, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
discrepancy; lattice points; exponential sums;
D O I
10.1016/j.jnt.2006.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The irregularities of distribution of lattice points on spheres and on level surfaces of polynomials are measured in terms of the discrepancy with respect to caps. It is found that the discrepancy depends on diophantine properties of the direction of the cap. If the direction of the cap is diophantine, in case of the spheres, close to optimal upper bounds are found. The estimates are based on a precise description of the Fourier transform of the set of lattice points on polynomial surfaces. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 83
页数:15
相关论文
共 10 条
[1]  
[Anonymous], 1959, ACTA ARITH, DOI DOI 10.4064/AA-5-2-227-257
[2]  
BECK J, 1987, CAMBRIDGE TRACTS MAT, V89
[3]   REPRESENTATION OF INTEGERS BY POSITIVE TERNARY QUADRATIC-FORMS AND EQUIDISTRIBUTION OF LATTICE POINTS ON ELLIPSOIDS [J].
DUKE, W ;
SCHULZEPILLOT, R .
INVENTIONES MATHEMATICAE, 1990, 99 (01) :49-57
[4]  
GOLUBEVA EP, 1985, P STEKLOV I MATH, V144, P173
[5]  
GOLUBEVA EP, 1985, P STEKLOV I MATH, V144, P38
[6]  
HEATHBROWN DR, 1983, P LOND MATH SOC, V47, P225
[7]   Discrete analogues in harmonic analysis: Spherical averages [J].
Magyar, A ;
Stein, EM ;
Wainger, S .
ANNALS OF MATHEMATICS, 2002, 155 (01) :189-208
[8]   Diophantine equations and ergodic theorems [J].
Magyar, A .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (05) :921-953
[9]   On the discrepancy of point distributions on spheres and hyperbolic spaces [J].
Magyar, A .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (04) :287-296
[10]  
Sarnak P., 1990, CAMBRIDGE TRACTS MAT, V99