Applications of phase plane analysis of a Lienard system to positive solutions of Schrodinger equations

被引:4
作者
Sugie, J [1 ]
Yamaoka, N [1 ]
机构
[1] Shimane Univ, Dept Math & Comp Sci, Matsue, Shimane 6908504, Japan
关键词
positive solution; Schrodinger equation; exterior domain; Lienard system;
D O I
10.1090/S0002-9939-02-06681-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with semilinear elliptic equations in an exterior domain of R-N with N greater than or equal to3. Sufficient conditions are obtained for the equation to have a positive solution which decays at infinity. The main result is proved by means of a supersolution-subsolution method presented by Noussair and Swanson. By using phase plane analysis of a system of Lienard type, a suitable positive supersolution is found out. Asymptotic decay estimation on a solution of the Lienard system gains a positive subsolution. Examples are given to illustrate the main result.
引用
收藏
页码:501 / 509
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1970, Annali di Matematica Pura ed Applicata
[2]   Positive solutions of Schrodinger equations in two-dimensional exterior domains [J].
Constantin, A .
MONATSHEFTE FUR MATHEMATIK, 1997, 123 (02) :121-126
[3]   GENERALIZED LIENARD EQUATION WITH NEGATIVE DAMPING [J].
GRAEF, JR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :34-+
[4]   POSITIVE SOLUTIONS OF QUASILINEAR ELLIPTIC-EQUATIONS IN EXTERIOR DOMAINS [J].
NOUSSAIR, ES ;
SWANSON, CA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (01) :121-133
[5]   POSITIVE SOLUTIONS OF SEMI-LINEAR SCHRODINGER-EQUATIONS IN EXTERIOR DOMAINS [J].
NOUSSAIR, ES ;
SWANSON, CA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (06) :993-1003
[6]   On global asymptotic stability of systems of Lienard type [J].
Sugie, J ;
Chen, DL ;
Matsunaga, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 219 (01) :140-164
[7]   Nonoscillation theorems for a nonlinear self-adjoint differential equation [J].
Sugie, J ;
Yamaoka, N ;
Obata, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) :4433-4444
[8]  
SUGIE J, IN PRESS ANN MATH PU
[9]   BOUNDED POSITIVE SOLUTIONS OF SEMI-LINEAR SCHRODINGER-EQUATIONS [J].
SWANSON, CA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (01) :40-47
[10]   CRITERIA FOR OSCILLATORY SUBLINEAR SCHRODINGER-EQUATIONS [J].
SWANSON, CA .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 104 (02) :483-493