Lie group methods for optimization with orthogonality constraints

被引:24
|
作者
Plumbley, MD [1 ]
机构
[1] Univ London, Dept Elect Engn, Mile End Rd, London E1 4NS, England
关键词
D O I
10.1007/978-3-540-30110-3_157
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Optimization of a cost function J(W) under an orthogonality constraint WWT = I is a common requirement for ICA methods. In this paper, we will review the use of Lie group methods to perform this constrained optimization. Instead of searching in the space of n x n matrices W, we will introduce the concept of the Lie group SO(n) of orthogonal matrices, and the corresponding Lie algebra so(n). Using so(n) for our coordinates, we can multiplicatively update W by a rotation matrix R so that W' = RW always remains orthogonal. Steepest descent and conjugate gradient algorithms can be used in this framework.
引用
收藏
页码:1245 / 1252
页数:8
相关论文
共 50 条
  • [21] Global Optimization with Orthogonality Constraints via Stochastic Diffusion on Manifold
    Yuan, Honglin
    Gu, Xiaoyi
    Lai, Rongjie
    Wen, Zaiwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 1139 - 1170
  • [22] On Orthogonality Constraints for Transformers
    Zhang, Aston
    Chan, Alvin
    Tay, Yi
    Fu, Jie
    Wang, Shuohang
    Zhang, Shuai
    Shao, Huajie
    Yao, Shuochao
    Lee, Roy Ka-Wei
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 375 - 382
  • [23] Generalized left-localized Cayley parametrization for optimization with orthogonality constraints
    Kume, Keita
    Yamada, Isao
    OPTIMIZATION, 2024, 73 (04) : 1113 - 1159
  • [24] Alternating Optimization for Tensor Factorization with Orthogonality Constraints: Algorithm and Parallel Implementation
    Karakasis, Paris A.
    Liavas, Athanasios P.
    PROCEEDINGS 2018 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2018, : 439 - 444
  • [25] Sums of random symmetric matrices and quadratic optimization under orthogonality constraints
    Arkadi Nemirovski
    Mathematical Programming, 2007, 109 : 283 - 317
  • [26] Sums of random symmetric matrices and quadratic optimization under orthogonality constraints
    Nemirovski, Arkadi
    MATHEMATICAL PROGRAMMING, 2007, 109 (2-3) : 283 - 317
  • [27] Generalized left-localized Cayley parametrization for optimization with orthogonality constraints
    Kume, Keita
    Yamada, Isao
    OPTIMIZATION, 2022,
  • [28] Discrete Lagrange problems with constraints valued in a Lie group
    Chacon, Pablo M.
    Fernandez, Antonio
    Garcia, Pedro L.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 86
  • [29] STOCHASTIC OPTIMIZATION METHODS WITH CONSTRAINTS
    DEVYATERIKOV, IP
    KOSHLAN, AI
    AUTOMATION AND REMOTE CONTROL, 1988, 49 (04) : 397 - 412
  • [30] Nonconvex and Nonsmooth Optimization with Generalized Orthogonality Constraints: An Approximate Augmented Lagrangian Method
    Zhu, Hong
    Zhang, Xiaowei
    Chu, Delin
    Liao, Li-Zhi
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) : 331 - 372